
THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Centre de recherche Inria de l'Université Grenoble Alpes

Vers une caractérisation automatique du comportement micro-
architectural pour la modélisation des performances de noyaux de
calcul : une analyse des micro-architectures Cortex A72 et Intel

Towards automatic characterization of microarchitectural behaviour
for performance modeling of computing kernels: an analysis of the
Cortex A72 and Intel microarchitectures

Présentée par :

Théophile BASTIAN
Direction de thèse :

Fabrice RASTELLO
DIRECTEUR DE RECHERCHE, INRIA CENTRE GRENOBLE-RHONE-
ALPES

Directeur de thèse

Rapporteurs :
KEVIN MARTIN
PROFESSEUR DES UNIVERSITES, UNIVERSITE BRETAGNE SUD - LORIENT VANNES
GABRIEL RODRIGUEZ
ASSOCIATE PROFESSOR, UNIVERSIDAD DA CORUÑA

Thèse soutenue publiquement le 9 décembre 2024, devant le jury composé de :
Présidente

Directeur de thèse

Rapporteur

Rapporteur

LAURENCE PIERRE,
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE ALPES
FABRICE RASTELLO,
DIRECTEUR DE RECHERCHE, CENTRE INRIA UNIVERSITE
GRENOBLE ALPES
KEVIN MARTIN,
PROFESSEUR DES UNIVERSITES, UNIVERSITE BRETAGNE SUD -
LORIENT VANNES
GABRIEL RODRIGUEZ,
ASSOCIATE PROFESSOR, UNIVERSIDAD DA CORUÑA
GAËL THOMAS,
DIRECTEUR DE RECHERCHE, CENTRE INRIA DE SACLAY

Examinateur

Version 6b0539a

2

Résumé

Qu’il s’agisse de calculs massifs distribués sur plusieurs baies, de calculs en environnement
contraint — comme de l’embarqué ou de l’edge computing — ou encore de tentatives de
réduire l’empreinte écologique d’un programme fréquemment utilisé, de nombreux cas d’usage
justifient l’optimisation poussée d’un programme. Celle-ci s’arrête souvent à l’optimisation
de haut niveau (algorithmique, parallélisme, …), mais il est possible de la pousser jusqu’à une
optimisation bas-niveau, s’intéressant à l’assembleur généré en regard de la microarchitecture
du processeur précis utilisé.

Une telle optimisation demande une compréhension fine des aspects à la fois logiciels
et matériels en jeu, et n’est bien souvent accessible qu’aux experts du domaine. Les code
analyzers (analyseurs de code), cependant, permettent d’abaisser le niveau d’expertise
nécessaire pour accomplir de telles optimisations, en automatisant une partie du travail
de compréhension des problèmes de performance rencontrés. Ces mêmes outils permettent
également aux experts d’être plus efficaces dans leur travail.

Dans ce manuscrit, nous étudierons les principaux facteurs limitants de la performance
d’un processeur, sur lesquels la précision des outils de l’état de l’art est bien souvent
inégale. Nous apportons, sur chacun de ces facteurs limitants, une contribution nouvelle :
automatisation de l’obtention d’un modèle du backend, étude manuelle du frontend en vue
de l’automatisation de son modèle, et extraction automatique des dépendances à travers
la mémoire d’un noyau de calcul. Nous apportons également une étude systématique et
automatisée des performances de prédiction de différents code analyzers de l’état de l’art.

3

Abstract

Be it massively distributed computation over multiple server racks, constrained compu-
tation — such as in embedded environments or in edge computing —, or still an attempt
to reduce the ecological footprint of a frequently-run program, many use-cases make it
relevant to deeply optimize a program. This optimisation is often limited to high-level
optimisation — choice of algorithms, parallel computing, … Yet, it is possible to carry it
further to low-level optimisations, by inspecting the generated assembly with respect to the
microarchitecture of the specific microprocessor used to fine-tune it.

Such an optimisation level requires a very detailed understanding of both the software
and hardware aspects implied, and is most often the realm of experts. Code analyzers,
however, are tools that help lowering the expertise threshold required to perform such
optimisations by automating away a portion of the work required to understand the source
of the encountered performance problems. The same tools are also useful to experts, as they
help them be more efficient in their work.

In this manuscript, we study the main performance bottlenecks of a processor, on
which the state of the art does not perform consistently. For each of these bottlenecks, we
contribute to the state of the art. We work on automating the obtention of a model of the
processor’s backend; we manually study the processor’s frontend, hoping to set a milestone
towards the automation of the obtention of such models; we provide a tool to automatically
extract a computation kernel’s memory-carried dependencies. We also provide a systematic,
automated and fully-tooled study of the prediction accuracy of various state-of-the-art code
analyzers.

4

Remerciements

Cette thèse n’aurait très certainement pas été la même sans la présence à mes côtés et l’aide
précieuse de nombreuses personnes, que je souhaite remercier chaleureusement ici.

À commencer, bien évidemment, par Fabrice, sans qui ce manuscrit n’aurait tout bonnement
pas existé, et qui m’a accompagné dans mon parcours, de la découverte de ce domaine à la
soutenance de cette thèse.

Merci également au jury, et encore plus aux deux rapporteurs, Kevin Martin et Gabriel
Rodriguez, de s’être plongés dans ce manuscrit. Merci pour vos commentaires positifs et
encourageants, mais aussi pour vos retours critiques qui me permettent d’améliorer ce travail.

Plus largement, c’est aussi toute l’équipe Corse que je souhaite remercier, tant pour les
échanges scientifiques constructifs que nous avons pu avoir que pour les conversations plus
légères de tous les jours qui ont fait du labo un endroit agréable 1. Parmi vous, merci tout
particulièrement à Nicolas D. pour notre collaboration sur Palmed que nous avons su, malgré
les confinements et couvre-feux de cette étrange période, rentre motivante et productive. Merci
aussi à Hugo P., Valentin T. et Christophe G., avec qui j’ai le plus directement collaboré. Merci
encore à Imma P., qui sait si efficacement rendre la charge administrative transparente à nos
yeux. Travailler avec vous tous et toutes a été un plaisir.

Mes remerciements vont aussi à la Ville d’Échirolles, et tout particulièrement à Philippe et
Nicolas, qui m’ont permis de finir ma thèse dans de bonnes conditions malgré mon emploi à
temps plein.

Toutes ces courbes et ces modèles n’auraient pas pu voir le jour sans l’exploitation forcenée
de quelques pauvres processeurs, qui, je n’en doute pas, espéraient plutôt couler de doux jours
dans un serveur web. Merci donc à Pinocchio, Dracula, les Dahus de Grid5000, et mes sincères
excuses à Corse-rpi0 pour les pics de fièvre que je lui ai causés 2.

Il va également sans dire que la présence et le soutien de mes proches de tous horizons m’a
été précieux au cours de ces années, et je vous remercie chaleureusement toutes et tous. Au
risque d’oublier des gens, je citerai pêle-mêle mes amis de l’ENS et de l’Arcoloc, les choristes et
amis des Rainbow et, plus tard, du CUG et les personnes rencontrées à Grésille. Et, surtout, un
merci tout particulier à Sarah, Nina et à ma mère, Rosine.

Merci à vous toutes et tous.

1. Même s’il y manquait du vrai café.
2. Et mon manque d’inspiration pour son baptême.

5

Contents

Notations 8

Introduction 9

1 Foundations 12
1.1 A dive into processors’ microarchitecture . 12

1.1.1 High-level abstraction of processors . 12
1.1.2 Microarchitectures . 13

1.2 Kernel optimization and code analyzers . 16
1.2.1 Code analyzers . 17
1.2.2 Examples with llvm-mca . 18
1.2.3 Definitions . 23

1.3 State of the art . 28
1.3.1 Manufacturer-sourced data . 28
1.3.2 Third-party instruction data . 28
1.3.3 Code analyzers and their models . 29

2 Palmed: automatically modelling the backend 31
2.1 Resource models . 31

2.1.1 Usual representation: tripartite disjunctive graph 31
2.1.2 Dual representation: conjunctive resource mapping 33

2.2 Palmed design . 34
2.3 Measuring a kernel’s throughput: Pipedream 35
2.4 Finding basic blocks to evaluate Palmed . 36

2.4.1 Benchmark suites . 37
2.4.2 Manually extracting basic blocks . 37
2.4.3 Automating basic block extraction . 37

2.5 Evaluating Palmed . 39
2.5.1 Evaluation harness . 39
2.5.2 Metrics extracted . 40
2.5.3 Results . 40

2.6 Other contributions . 42

3 Beyond ports: manually modelling the A72 frontend 44
3.1 Necessity to go beyond ports . 45
3.2 The Cortex A72 CPU . 45
3.3 Manually modelling the A72 frontend . 47

3.3.1 Finding micro-operation count for each instruction 47
3.3.2 Bubbles in the pipeline . 49

3.4 Evaluation on Palmed . 53
3.5 A parametric model for future works of automatic frontend model generation . 53

6

4 A more systematic approach to throughput prediction performance analysis:
CesASMe 57
4.1 Re-defining the execution time of a kernel . 58
4.2 Related works . 59
4.3 Generating microbenchmarks . 60

4.3.1 Benchmark suite . 60
4.3.2 C-to-C loop nest optimizers . 61
4.3.3 Constraining utility . 61
4.3.4 C-to-binary compiler . 61

4.4 Benchmarking harness . 61
4.4.1 Basic block extraction . 62
4.4.2 Throughput predictions and measures 62
4.4.3 Prediction lifting and filtering . 62

4.5 Experimental setup and evaluation . 63
4.5.1 Experimental environment . 63
4.5.2 Comparability of the results . 63
4.5.3 Relevance and representativity (bottleneck analysis) 65
4.5.4 Carbon footprint . 65

4.6 Results analysis . 66
4.6.1 Throughput results . 66
4.6.2 Understanding BHive’s results . 66
4.6.3 Bottleneck prediction . 68
4.6.4 Impact of dependency-boundness . 69

5 Static extraction of memory-carried dependencies 73
5.1 Types of dependencies . 73
5.2 A baseline: dynamic dependencies detection with valgrind 75

5.2.1 Valgrind . 75
5.2.2 Depsim . 75

5.3 Static dependencies detection . 76
5.3.1 Far-reaching dependencies do not impact performance 77

5.4 Staticdeps . 79
5.4.1 The staticdeps heuristic . 79
5.4.2 Practical implementation . 81
5.4.3 Limitations . 81

5.5 Evaluation . 82
5.5.1 Comparison to depsim results . 82
5.5.2 Enriching uiCA’s model . 84
5.5.3 Analysis speed . 86

6 Wrapping it all up 88
6.1 Critical path model . 88
6.2 Evaluation . 88
6.3 Towards a modular approach? . 90

Conclusion 91

Bibliography 94

7

Notations

Throughout this whole document, the following non-standard notations are used.

Notation Meaning (See also)

K Reciprocal throughput of K, in cycles per occurrence of K. §1.2.3
KM(n) Measured reciprocal throughput of K, over n iterations of K.

When there is no ambiguity and n is sufficiently large, we often
write K instead.

§1.2.3

KB Reciprocal throughput of K if it was only limited by the CPU’s
backend.

§3.3.1

KF Reciprocal throughput of K if it was only limited by the CPU’s
frontend.

§3.3.1

C(K) Number of cycles of a kernel K. §1.2.3
Kn K repeated n times. §1.2.3

IPC(K) Instructions Per Cycle in the execution of the kernel K, in
steady state, averaged.

§1.2.3

#µi Number of µOPs the instruction i is decoded into. This can
be extended to a kernel: #µK.

§3.3.1

τK Kendall’s τ coefficient of correlation. §2.5.2,
[Ken38]

8

Introduction

Developing new features and fixing problems are often regarded as the major parts of the
development cycle of a program. However, performance optimization might be just as crucial
for compute-intensive software. On small-scale applications, it improves usability by reducing,
or even hiding, the waiting time the user must endure between operations, or by allowing
heavier workloads to be processed without needing larger resources or in constrained embedded
hardware environments. On large-scale applications, that may run for an extended period of
time, or may be run on whole clusters, optimization is a cost-effective path, as it allows the
same workload to be run on smaller clusters, for reduced periods of time.

The most significant optimisation gains come from “high-level” algorithmic changes, such
as computing on multiple cores instead of sequentially, caching already computed results,
reimplementing a function to run asymptotically in O (n · log(n)) instead of O

(
n2) or avoiding

the copy of large data structures. However, when a software is already well-optimized from these
perspectives, the impact of low-level considerations, stemming from the hardware implementation
of the machine itself, cannot be neglected anymore. A common example of such impacts is the
iteration of a large matrix either row-major or column-major:

sum ← 0
for row < MAX_ROW do

for col < MAX_COLUMN do
sum ← sum + matrix[row][col]

sum ← 0
for col < MAX_COLUMN do

for row < MAX_ROW do
sum ← sum + matrix[row][col]

While both programs are performing the exact same computation, the left one iterates on
rows first, or row-major, while the right one iterates on columns first, or column-major. The
latter, on large matrices, will cause frequent cache misses, and was measured to run up to about
six times slower than the former [Bas23].

This, however, is still an optimization that holds for the vast majority of CPUs. In many
cases, transformations targeting a specific microarchitecture can be very beneficial. For instance,
Uday Bondhugula found out that manual tuning, through many techniques and tools, of a
general matrix multiplication could multiply its throughput by roughly 13.5 compared to
gcc -O3, or even be 130 times faster than clang -O3 [Bon20]. This kind of optimizations,
however, requires manual effort, and a deep expert knowledge both in optimization techniques
and on the specific architecture targeted. These techniques are only worth applying on the
parts of a program that are most executed — usually called the hottest parts —, loop bodies
that are iterated enough times to be assumed infinite. Such loop bodies are called computation
kernels, with which this whole manuscript will be concerned.

Developers are used to functional debugging, the practice of tracking the root cause of an
unexpected bad functional behaviour. Akin to it is performance debugging, the practice of
tracking the root cause of a performance below expectations. Just as functional debugging can
be carried in a variety of ways, from guessing and inserting print instructions to sophisticated
tools such as gdb, performance debugging can be carried with different tools. Crude timing
measures and profiling can point to a general part of the program or hint an issue; reading
hardware counters — metrics reported by the CPU — can lead to a better understanding, and

9

may confirm or invalidate an hypothesis. Other tools still, code analyzers, analyze the assembly
code and, in the light of a built-in hardware model, strive to provide a performance analysis.

An exact modelling of the processor would require a cycle-accurate simulator, reproducing
the precise behaviour of the silicon, allowing one to observe any desired metric. Such a simulator,
however, would be prohibitively slow, and is not available on most architectures anyway, as
processors are not usually open hardware and the manufacturer regards their implementation
as industrial secret. Code analyzers thus resort to approximated, higher-level models of varied
kinds. Tools based on such models, as opposed to measures or hardware counters sampling, may
not always be precise and faithful. They can, however, inspect at will their inner model state,
and derive more advanced metrics or hypotheses, for instance by predicting which resource
might be overloaded and slow the whole computation.

In this thesis, we explore the three major aspects that work towards a code analyzer’s
accuracy: a backend model, a frontend model and a dependencies model. We propose contributions
to strengthen them, as well as to automate the underlying models’ synthesis. We focus on static
code analyzers, that derive metrics, including runtime predictions, from an assembly code or
assembled binary without executing it.

The first chapter introduces the foundations of this manuscript, describing the microarchi-
tectural notions on which our analyses will be based, and exploring the current state of the
art.

The chapter 2 introduces Palmed, a benchmarks-based tool automatically synthesizing a
model of a CPU’s backend. Although the theoretical core of Palmed is not my own work, I made
major contributions to other aspects of the tool. The chapter also presents the foundations and
methodologies Palmed shares with the following parts.

In chapter 3, we explore the frontend aspects of static code analyzers. This chapter focuses
on the manual study of the Cortex A72 processor, and proposes a static model of its frontend.
We finally reflect on the generalization of our manual approach into an automated frontend
modelling tool, akin to Palmed.

Chapter 4 makes an extensive study of the state-of-the-art code analyzers’ strengths and
shortcomings. To this end, we introduce a fully-tooled approach in two parts: first, a benchmark-
generation procedure, yielding thousands of benchmarks relevant in the context of our approach;
then, a benchmarking harness evaluating code analyzers on these benchmarks. We find that most
state-of-the-art code analyzers struggle to correctly account for some types of data dependencies.

Further building on our findings, chapter 5 introduces staticdeps, an accurate heuristic-
based tool to statically extract data dependencies from an assembly computation kernel. We
extend uiCA, a state-of-the-art code analyzer, with staticdeps predictions, and evaluate the
enhancement of its accuracy.

Throughout this manuscript, we explore notions that are transversal to the hardware blocks
the chapters lay out.

Most of our approaches work towards an automated, microarchitecture-independent tooling.
While fine-grained, accurate code analysis is directly concerned with the underlying hardware
and its specific implementation, we strive to write tooling that has the least dependency towards
vendor-specific interfaces. In practice, this rules out most uses of hardware counters, which
depend greatly on the manufacturer, or even the specific chip considered. As some CPUs
expose only very bare hardware counters, we see this commitment as an opportunity to develop
methodologies able to model these processors.

This is particularly true of Palmed, in chapter 2, whose goal is to model a processor’s backend
resources without resorting to its vendor-specific hardware counters. Our frontend study, in
chapter 3, also follows this strategy by focusing on a processor whose hardware counters give

10

little to no insight on its frontend. While this goal is less relevant to staticdeps, we rely on
external libraries to abstract the underlying architecture.

Our methodologies are, whenever relevant, benchmarks- and experiments-driven, in a bottom-
up style, placing real hardware at the center. In this spirit, Palmed is based solely on benchmarks,
discarding entirely the manufacturer’s documentation. Our model of the Cortex A72 frontend
is based both on measures and documentation, yet it strives to be a case study from which
future works can generalize, to automatically synthesize frontend models in a benchmarks-based
fashion. One of the goals of our survey of the state of the art, in chapter 4, is to identify through
experiments the shortcomings that are most crucial to address in order to strengthen static
code analyzers.

Finally, against the extent of the ecological and climatic crises we are facing, as assessed
among others by the IPCC [Con23], we believe that every field and discipline should strive for a
positive impact or, at the very least, to reduce as much as possible its negative impact. Our very
modest contribution to this end, throughout this thesis, is to commit ourselves to computations
as frugal as possible: run computation-heavy experiments as least as possible; avoid running
multiple times the same experiment, but cache results instead when this is feasible; etc. This
commitment partly motivated us to implement a results database in Palmed, to compute only
once each benchmark. As our experiments in chapter 4 take many hours to yield a result, we at
least evaluate their carbon impact.

We believe it noteworthy, however, to point out that although this thesis is concerned with
tools that help optimize large computation workloads, optimization does not lead to frugality.
In most cases, Jevons paradox — also called rebound effect — makes it instead more likely to
lead to an increased absolute usage of computational resources [Jev66; YM16].

11

Chapter 1

Foundations

Code analyzers lay at the boundary of program analysis and microarchitectural knowledge.
In order to understand their internal models, and how they derive performance metrics from
them, notions on both of those worlds are needed.

This first chapter aims to lay the foundations for this manuscript. To this end, we first go
over a coarse-grained view of the microarchitectural details of the parts of a modern processor
relevant to our works. We then introduce notions and metrics on program analysis that will be
used throughout this thesis. Finally, we summarize the current state of the art in the field of
code analyzers, and relevant neighbouring topics.

1.1 A dive into processors’ microarchitecture
A modern computer can roughly be broken down into a number of functional parts: a

processor, a general-purpose computation unit; accelerators, such as GPUs, computation units
specialized on specific tasks; memory, both volatile but fast (RAM) and persistent but slower
(SSD, HDD); hardware specialized for interfacing, such as networks cards or USB controllers;
power supplies, responsible for providing smoothed, adequate electric power to the previous
components.

This manuscript will largely focus on the processor. While some of the techniques described
here might possibly be used for accelerators, we did not experiment in this direction, nor are
we aware of efforts in this direction.

1.1.1 High-level abstraction of processors

A processor, in its coarsest view, is simply a piece of hardware that can be fed with a flow
of instructions, which will, each after the other, modify the machine’s internal state.

The processor’s state, the available instructions themselves and their effect on the state
are defined by an Instruction Set Architecture, or ISA; such as x86-64 or A64 (ARM’s ISA).
More generally, the ISA defines how software will interact with a given processor, including
the registers available to the programmer, the instructions’ semantics — broadly speaking, as
these are often informal —, etc. These instructions are represented, at a human-readable level,
by assembly code, such as add (%rax), %rbx in x86-64. Assembly code is then transcribed, or
assembled, to a binary representation in order to be fed to the processor — for instance, 0x480318
for the previous instruction. This instruction computes the sum of the value held at memory
address %rax and of the value %rbx, but it does not, strictly speaking, return or produce a result:
instead, its stores the result of the computation in register %rbx, altering the machine’s state.

This state, generally, is composed of a small number of registers, small pieces of memory
on which the processor can directly operate — to perform arithmetic operations, index the
main memory, etc. It is also composed of the whole memory hierarchy, including the persistent

12

FRONTEND

BACKEND

Decoder Renamer …

Instruction
flow

Reorder buffer (ROB)

Issue

Port 1 Port 2 Port … Port n

Pi
p
e
lin

e
d
 e

xe
cu

ti
o
n

u
n
it

s

REGISTER
FILE

L1
CACHE

…

RETIRE
BUFFER

Figure 1.1 – Simplified and generalized global representation of a CPU microarchitecture

memory, the main memory (usually RAM) and the hierarchy of caches between the processor
and the main memory. This state can also be extended to encompass external effects, such as
networks communication, peripherals, etc.

The way an ISA is implemented, in order for the instructions to alter the state as specified,
is called a microarchitecture. Many microarchitectures can implement the same ISA, as it is the
case for instance with the x86-64 ISA, implemented both by Intel and AMD, each with multiple
generations, which translates into multiple microarchitectures. It is thus frequent for ISAs to
have many extensions, which each microarchitecture may or may not implement.

1.1.2 Microarchitectures

While many different ISAs are available and used, and even many more microarchitectures
are industrially implemented and widely distributed, some generalities still hold for the vast
majority of processors found in commercial or server-grade computers. Such a generic view is
obviously an approximation and will miss many details and specificities; it should, however, be
sufficient for the purposes of this manuscript.

A microarchitecture can be broken down into a few functional blocks, shown in Figure 1.1,
roughly amounting to a frontend, a backend, a register file, multiple data caches and a retire
buffer.

Frontend and backend. The frontend is responsible for fetching the flow of instruction
bytes to be executed, break it down into operations executable by the backend and issue them

13

to execution units. The backend, in turn, is responsible for the actual computations made by
the processor.

As such, the frontend can be seen as a manager for the backend: the latter actually executes
the work, while the former ensures that work is made available to it, orchestrates its execution
and scheduling, and ensures each “worker” in the backend is assigned tasks within its skill set.

Register file. The register file holds the processor’s registers, small amounts of fast memory
directly built into the processor’s cores, on which computations are made.

Data caches. The cache hierarchy (usually L1, L2 and L3) caches data rows from the main
memory, whose access latency would slow computation down by several orders of magnitude if
it was accessed directly. Usually, the L1 cache resides directly in the computation core, while
the L2 and L3 caches are shared between multiple cores.

An instruction’s walk through the processor

Several CPU cycles may pass from the moment an instruction is first fetched by the processor,
until the time this instruction is considered completed and discarded. Let us follow the path of
one such instruction through the processor.

The CPU frontend constantly fetches a flow of instruction bytes. This flow must first be
broken down into a sequence of instructions. While on some ISAs, each instruction is made of
a constant amount of bytes — eg. ARM —, this is not always the case: for instance, x84-64
instructions can be as short as one byte, while the ISA only limits an instruction to 15 bytes [23c].
This task is performed by the decoder, which usually outputs a flow of micro-operations, or
µOPs.

Some microarchitectures rely on complex decoding phases, first splitting instructions into
macro-operations, to be split again into µOPs further down the line. Part of this decoding may
also be cached, eg. to optimize loop decoding, where the same sequence of instructions will be
decoded many times.

Microarchitectures typically implement more physical registers in their register file than
the ISA exposes to the programmer. The CPU takes advantage of those additional registers
by including a renamer in the frontend, to which the just-decoded operations are fed. The
renamer maps the ISA-defined registers used explicitly in instructions to concrete registers in
the register file. As long as enough concrete registers are available, this phase eliminates certain
categories of data dependencies; this aspect is explored briefly below, and later in chapter 5.

Depending on the microarchitecture, the decoded operations — be they macro- or micro-
operations at this stage — may undergo several more phases, specific to each processor.

Typically, however, µOPs will eventually be fed into a Reorder Buffer, or ROB. Today, most
consumer- or server-grade CPUs are out-of-order, with effects detailed below; the reorder buffer
makes this possible. The µOPs may wait for a few cycles in this reorder buffer, before being
pulled by the issuer.

Finally, the µOPs are issued to the backend towards execution ports. Each port usually
processes at most one µOP per CPU cycle, and acts as a sort of gateway towards the actual
execution units of the processor.

Each execution port may be (and usually is) connected to multiple different execution units:
for instance, Intel Skylake’s port 6 is responsible for both branch µOPs and integer arithmetics;
while ARM’s Cortex A72 has a single port for both memory loads and stores.

In most cases, execution units are fully pipelined, meaning that while processing a single µOP
takes multiple cycles, the unit is able to start processing a new µOP every cycle: multiple µOPs
are thus being processed, at different stages, during each cycle, akin to a factory’s assembly line.

14

Finally, when a µOP has been entirely processed and exits its processing unit’s pipeline, it
is committed to the retire buffer, marking the µOP as complete.

Dependencies handling

In this flow of µOPs, some are dependent on the result computed by a previous µOP — or,
rather more precisely, await the change of state induced by a previous µOP. If, for instance,
two successive identical µOPs compute %r10 ← %r10 + %r11, the second instance must wait
for the completion of the first one, as the value of %r10 after the execution of the latter is not
known before its completion.

The µOPs that depend on a previous µOP are not issued until the latter is marked as
completed by entering the retire buffer 1.

Since computation units are pipelined, they reach their best efficiency only when µOPs can
be fed to them in a constant flow. Yet, as such, a dependency may block the computation
entirely until its dependent result is computed, throttling down the CPU’s performance.

The renamer helps relieving this dependency pressure when the dependency can be broken
by simply renaming one of the registers. We detail this later on chapter 5, but such dependencies
may be eg. write-after-read: if %r11← %r10 is followed by %r10← %r12, then the latter must
wait for the former’s completion, as it would else overwrite %r10, which is read by the former.
However, the second instruction may be renamed to write to %r10alt instead — also renaming
every subsequent read to the same value —, thus avoiding the dependency.

Out-of-order vs. in-order processors

When computation is stalled by a dependency, it may however be possible to issue immedi-
ately a µOP which comes later in the instruction stream, but depends only on results already
available.

For this reason, many processors are now out-of-order, while processors issuing µOPs strictly
in their original order are called in-order. Out-of-order microarchitectures feature a reorder
buffer, from which instructions are picked to be issued. The reorder buffer acts as a sliding
window of microarchitecturally-fixed size over decoded µOPs, from which the oldest µOP whose
dependencies are satisfied will be executed. Thus, out-of-order CPUs are only able to execute
operations out of order as long as the µOP to be executed is not too far ahead from the oldest
µOP awaiting to be issued — specifically, not more than the size of the reorder buffer ahead.

It is also important to note that out-of-order processors are only out-of-order from a certain
point on: a substantial part of the processor’s frontend is typically still in-order.

Hardware counters

Many processors provide hardware counters, to help (low-level) programmers understand
how their code is executed. The counters available widely depend on each specific processor.
The majority of processors, however, offer counters to determine the number of elapsed cycles
between two instructions, as well as the number of retired instructions. Some processors further
offer counters for the number of cache misses and hits on the various caches, or even the number
of µOPs executed on a specific port.

While access to these counters is vendor-dependant, abstraction layers are available: for
instance, the Linux kernel abstracts these counters through the perf interface, while PAPI
further attempts to unify similar counters from different vendors under a common name.

1. Some processors, however, introduce “shortcuts” when a µOP can yield a result before its full completion.
In such cases, while the µOP depended on is not yet complete and retired, the dependant µOP can still be issued.

15

+

+

+

+

+

v1 (128b)

v1:0 (32b)

v1:1 (32b)

v1:2 (32b)

v1:3 (32b)

v2:0 (32b)

v2:1 (32b)

v2:2 (32b)

v2:3 (32b)

v2 (128b) v3 (128b)

v3:0 (32b)

v3:1 (32b)

v3:2 (32b)

v3:3 (32b)

Figure 1.2 – Example of SIMD 4× 32 bits add instruction on 128 bits

SIMD operations

Processors operate at a given word size, fixed by the ISA — typically 32 or 64 bits nowadays,
even though embedded processors might operate at lower word sizes.

Some instructions, however, operate on chunks of multiple words at once. These instructions
are called vector instructions, or SIMD for Single Instruction, Multiple Data. A SIMD “add”
instruction may, for instance, add two chunks of 128 bits, treated each as four integers of 32
bits bundled together, as illustrated in Figure 1.2.

Such instructions present clear efficiency advantages. If the processor is able to handle one
such instruction every cycle — even if it is pipelined for multiple cycles —, it multiplies by its
number of vector elements the processor’s throughput, making it able to process eg. four add
operations per cycle instead of one, as long as the data is arranged in memory in an appropriate
way. Some processors, however, are not able to process the full vector instruction at once, by
lack of backend units — it may, for instance, only process two 32-bits adds at once, making the
processor able to execute only one such instruction per two cycles. Even in this case, there are
clear efficiency benefits: while there is no real gain in the backend, the frontend has only one
instruction to decode, rename, etc., greatly alleviating frontend pressure. This is for instance
the case of the implementation of the RISC-V [Wat+11] vector extension, supporting up to
256 double-precision floats in a single operation, while the hardware supports far less in one
cycle [Man+23; Man23].

1.2 Kernel optimization and code analyzers
Optimizing a program, in most contexts, mainly means optimizing it from an algorithmic

point of view — using efficient data structures, running some computations in parallel on
multiple cores, etc. As pointed out in our introduction, though, optimizations close to the
machine’s microarchitecture can yield large efficiency benefits, sometimes up to two orders of
magnitude [Bon20]. These optimizations, however, are difficult to carry for multiple reasons:
they depend on the specific machine on which the code is run; they require deep expert knowledge;
they are most often manual, requiring expert time — and thus making them expensive.

Such optimizations are, however, routinely used in some domains. Scientific computation
— such as ocean simulation, weather forecast, … — often rely on the same operations, implemented
by low-level libraries optimized in such a way, such as OpenBLAS [Xia; Wan+13] or Intel’s
MKL [Int03], implementing low-level math operations, such as linear algebra. Machine learning
applications, on the other hand, may typically be trained for extensive periods of time, on many
cores and accelerators, on a well-defined hardware, with small portions of code being executed
many times on different data; as such, they are very well suited for such specific and low-level
optimizations.

16

When optimizing those short fragments of code whose efficiency is critical, or computation
kernels, insights on what limits the code’s performance, or performance bottlenecks, are precious
to the expert. These insights can be gained by reading the processor’s hardware counters,
described above in section 1.1.2, typically accurate but of limited versatility. Specialized profilers,
such as Intel’s VTune [Inta], integrate these counters with profiling to derive further performance
metrics at runtime.

1.2.1 Code analyzers

Another approach is to rely on code analyzers, pieces of software that analyze a code fragment
— typically at assembly or binary level —, and provide insights on its performance metrics on a
given hardware. Code analyzers thus work statically, that is, without executing the code.

Common hypotheses. Code analyzers operate under a set of common hypotheses, derived
from the typical intended usage.

The kernel analyzed is expected to be the body of a loop, or nest of loops, that should be
iterated many times enough to be approximated by an infinite loop. The kernel will further
be analyzed under the assumption that it is in steady-state, and will thus ignore startup or
border effects occurring in extremal cases. As the kernels analyzed are those worth optimizing
manually, it is reasonable to assume that they will be executed many times, and focus on their
steady-state.

The kernel is further assumed to be L1-resident, that is, to work only on data that resides
in the L1 cache. This assumption is reasonable in two ways. First, if data must be fetched
from farther caches, or even the main memory, these fetch operations will be multiple orders
of magnitude slower than the computation being analyzed, making it useless to optimize this
kernel for CPU efficiency — the expert should, in this case, focus instead on data locality,
prefetching, etc. Second, code analyzers typically focus only on the CPU itself, and ignore
memory effects. This hypothesis formalizes this focus; code analyzers metrics are thus to be
regarded assuming the CPU is the bottleneck.

Code analyzers also disregard control flow, and thus assume the code to be straight-line
code: the kernel analyzed is considered as a sequence of instructions without influence on the
control flow, executed in order, and jumping unconditionally back to the first instruction after
the last — or, more accurately, the last jump is always assumed taken, and any control flow
instruction in the middle is assumed not taken, while their computational cost is accounted for.

Metrics produced. The insights they provide as an output vary with the code analyzer
used. All of them are able to predict either the throughput or reciprocal throughput — defined
below — of the kernel studied, that is, how many cycles one iteration of the loop takes, in
average and in steady-state. Although throughput can already be measured at runtime with
hardware counters, a static estimation — if reliable — is already an improvement, as a static
analyzer is typically faster than running the actual program under profiling.

Each code analyzer relies on a model, or a collection of models, of the hardware on which
it provides analyzes. Depending on what is, or is not modelled by a specific code analyzer, it
may further extract any available and relevant metric from its model: whether the frontend
is saturated, which computation units from the backend are stressed and by which precise
instructions, when the CPU stalls and why, etc. Code analyzers may further point towards the
resources that are limiting the kernel’s performance, or bottlenecks.

Static vs. dynamic analyzers. Tools analyzing code, and code analyzers among them, are
generally either performing static or dynamic analyses. Static analyzers work on the program
itself, be it source code, assembly or any representation, without running it; while dynamic

17

analyzers run the analyzed program, keeping it under scrutiny through either instrumentation,
monitoring or any relevant technique. Some analyzers mix both strategies to further refine their
analyses. As a general rule of thumb, dynamic analyzers are typically more accurate, being
able to study the actual execution trace (or traces) of the program, but are significantly slower
due to instrumentation’s large overhead and focus more on the general, average case than on
edge cases.

As most code analyzers are static, this manuscript largely focuses on static analysis. The
only dynamic code analyzer we are aware of is Gus, described more thoroughly in section 1.3
later, trading heavily run time to gain in accuracy, especially regarding data dependencies that
may not be easily obtained otherwise.

Input formats used. The analyzers studied in this manuscript all take as input either
assembly code, or assembled binaries.

In the case of assembly code, as for instance with llvm-mca, analyzers take either a short
assembly snippet, treated as straight-line code and analyzed as such; or longer pieces of assembly,
part or parts of which being marked for analysis by surrounding assembly comments.

In the case of assembled binaries, as all analyzers were run on Linux, executables or object
files are ELF files. Some analyzers work on sections of the file defined by user-provided offsets
in the binary, while others require the presence of IACA markers around the code portion or
portions to be analyzed. Those markers, introduced by IACA as C-level preprocessor statements,
consist in the following x86 assembly snippets:

1 mov ebx, 111
2 db 0x64, 0x67, 0x90

IACA start marker

1 mov ebx, 222
2 db 0x64, 0x67, 0x90

IACA end marker
On UNIX-based operating systems, the standard format for assembled binaries — either

object files (.o) or executables — is ELF [Com+95]. Such files are organized in sections, the
assembled instructions themselves being found in the .text section — the rest holding metadata,
program data (strings, icons, …), debugging information, etc. When an ELF is loaded to memory
for execution, each segment may be mapped to a portion of the address space. For instance,
if the .text section has 1024 bytes, starting at offset 4096 of the ELF file itself, it may be
mapped at virtual address 0x454000; as such, the byte that could be read from the program
by dereferencing address 0x454010 would be the 16th byte from the .text section, that is, the
byte at offset 4112 in the ELF file.

Throughout the ELF file, symbols are defined as references, or pointers, to specific offsets or
chunks in the file. This mechanism is used, among others, to refer to the program’s function.
For instance, a symbol main may be defined, that would point to the offset of the first byte of
the main function, and may also hold its total number of bytes.

Both these mechanisms can be used to identify, without IACA markers or the like, a section
of ELF file to be analyzed: an offset and size in the .text section can be provided (which can
be found with tools like objdump), or a symbol name can be provided, if an entire function is to
be analyzed.

1.2.2 Examples with llvm-mca

We have now covered enough of the theoretical background to introduce code analyzers in a
concrete way, through examples of their usage. For this purpose, we use llvm-mca, one of the
state-of-the-art code analyzers.

Due to its relative simplicity — at least compared to eg. Intel’s x86-64 implementations —,
we will base the following examples on ARM’s Cortex A72, which we introduce in depth later
in chapter 3. No specific knowledge of this microarchitecture is required to understand the
following examples; for our purposes, if suffices to say that:

18

— the A72 has a single load port, a single store port and two integer arithmetics ports;
— the xN registers are 64-bits registers;
— the ldr instruction (load register) loads a value from memory into a register;
— the str instruction (store register) stores the value of a register to memory;
— the add instruction adds integer values from its two last operands and stores the result

in the first.

Simple example: a single load. We first start by running llvm-mca on a single load
operation: ldr x1, [x2].

1 $ echo 'ldr x1,[x2]' | llvm-mca --march=aarch64 --mcpu=cortex-a72 -
2 Iterations: 100
3 Instructions: 100
4 Total Cycles: 106
5 Total uOps: 100
6

7 Dispatch Width: 3
8 uOps Per Cycle: 0.94
9 IPC: 0.94

10 Block RThroughput: 1.0
11

12

13 Instruction Info:
14 [1]: #uOps
15 [2]: Latency
16 [3]: RThroughput
17 [4]: MayLoad
18 [5]: MayStore
19 [6]: HasSideEffects (U)
20

21 [1] [2] [3] [4] [5] [6] Instructions:
22 1 4 1.00 * ldr x1, [x2]
23

24

25 Resources:
26 [0] - A57UnitB
27 [1.0] - A57UnitI
28 [1.1] - A57UnitI
29 [2] - A57UnitL
30 [3] - A57UnitM
31 [4] - A57UnitS
32 [5] - A57UnitW
33 [6] - A57UnitX
34

35

36 Resource pressure per iteration:
37 [0] [1.0] [1.1] [2] [3] [4] [5] [6]
38 - - - 1.00 - - - -
39

40 Resource pressure by instruction:
41 [0] [1.0] [1.1] [2] [3] [4] [5] [6] Instructions:
42 - - - 1.00 - - - - ldr x1, [x2]

The first rows (2-10) are high-level metrics. llvm-mca works by simulating the execution of
the kernel — here, 100 times, as seen row 2 —. This simple kernel contains only one instruction,
which breaks down into a single µOP. Iterating it takes 106 cycles instead of the expected 100
cycles, as this execution is not in steady-state, but accounts for the cycles from the decoding of
the first instruction to the retirement of the last.

Row 7 indicates that each cycle, the frontend can issue at most 3 µOPs. The next two rows
are simple ratios. Row 10 is the block’s reverse throughput, which we will note K and formalize

19

later in section 1.2.3, but is roughly defined as the number of cycles a single iteration of the
kernel takes.

The next section, instruction info, lists data about the instructions present.
Finally, the last section, resources, breaks down individual instructions into load incurred on

execution ports, first aggregating it by full iteration of the kernel, then instruction by instruction.
The maximal load of each port is normalized to 1, which amounts to say that it is expressed in
number of cycles required to process the load.

Here, the only pressure is 1 on the port labeled [2], that is, the load port. Thus, the kernel
cannot complete in less than a full cycle, as it takes up all load resources available.

The timeline mode. Another useful view that can be displayed by llvm-mca is its timeline
mode, enabled by passing an extra --timeline flag. In the previous example, it further outputs:

1 Timeline view:
2 012345
3 Index 0123456789
4

5 [0,0] DeeeeER . . ldr x1, [x2]
6 [1,0] D=eeeeER . . ldr x1, [x2]
7 [2,0] D==eeeeER . . ldr x1, [x2]
8 [3,0] .D==eeeeER. . ldr x1, [x2]
9 [4,0] .D===eeeeER . ldr x1, [x2]

10 [5,0] .D====eeeeER . ldr x1, [x2]
11 [6,0] . D====eeeeER . ldr x1, [x2]
12 [7,0] . D=====eeeeER . ldr x1, [x2]
13 [8,0] . D======eeeeER. ldr x1, [x2]
14 [9,0] . D======eeeeER ldr x1, [x2]

which indicates, for each instruction, the timeline of its execution. Here, D stands for decode,
e for being executed — in the pipeline —, E for last cycle of its execution — leaving the
pipeline —, R for retiring. When an instruction is decoded and waiting to be dispatched to
execution, an = is shown.

The identifier at the beginning of each row indicates the kernel iteration number, and the
instruction within.

Here, we can better understand the 106 cycles seen earlier: it takes a first cycle to decode
the first instruction, the instruction remains in the pipeline for 5 cycles, and must finally be
retired. In steady-state, however, the instruction would be already decoded (while a previous
instruction was being executed), the retirement would also be taking place while another
instruction executes, and the pipeline would be accepting new instructions for four of these five
cycles. We can thus avoid using up 6 of those 106 cycles in steady-state, taking us back to the
expected 100 cycles.

Single integer add. If we substitute this load operation with an integer add operation, we
find a reverse throughput halved:

1 $ echo 'add x1,x2,x3' | llvm-mca --march=aarch64 --mcpu=cortex-a72 -
2 Iterations: 100
3 Instructions: 100
4 Total Cycles: 53
5 Total uOps: 100
6

7 Dispatch Width: 3
8 uOps Per Cycle: 1.89
9 IPC: 1.89

10 Block RThroughput: 0.5
11

12 [...]
13

20

14 [1.0] - A57UnitI
15 [1.1] - A57UnitI
16

17 [...]
18

19 Resource pressure by instruction:
20 [0] [1.0] [1.1] [2] [3] [4] [5] [6] Instructions:
21 - 0.50 0.50 - - - - - add x1, x2, x3
22

23 Timeline view:
24 Index 01234567
25

26 [0,0] DeER . . add x1, x2, x3
27 [1,0] DeER . . add x1, x2, x3
28 [2,0] D=eER. . add x1, x2, x3
29 [3,0] .DeER. . add x1, x2, x3
30 [4,0] .D=eER . add x1, x2, x3
31 [5,0] .D=eER . add x1, x2, x3
32 [6,0] . D=eER. add x1, x2, x3
33 [7,0] . D=eER. add x1, x2, x3
34 [8,0] . D==eER add x1, x2, x3
35 [9,0] . D=eER add x1, x2, x3

Indeed, as we have two integer arithmetics unit, two adds may be executed in parallel, as
can be seen in the timeline view.

Load and two adds. If we combine those two instructions in a kernel with a single load and
two adds, we obtain a kernel that still fits in the execution ports in a single cycle. llvm-mca
confirms this:

1 $ echo -e 'ldr x1,[x2]
2 add x3,x4,x5
3 add x6,x7,x8' | llvm-mca --march=aarch64 --mcpu=cortex-a72 -
4

5 Iterations: 100
6 Instructions: 300
7 Total Cycles: 106
8 Total uOps: 300
9

10 Dispatch Width: 3
11 uOps Per Cycle: 2.83
12 IPC: 2.83
13 Block RThroughput: 1.0
14

15 [...]
16

17 Resource pressure per iteration:
18 [0] [1.0] [1.1] [2] [3] [4] [5] [6]
19 - 1.00 1.00 1.00 - - - -
20

21 Resource pressure by instruction:
22 [0] [1.0] [1.1] [2] [3] [4] [5] [6] Instructions:
23 - - - 1.00 - - - - ldr x1, [x2]
24 - - 1.00 - - - - - add x3, x4, x5
25 - 1.00 - - - - - - add x6, x7, x8

We can indeed see that an iteration fully utilizes the three ports, but still fits: the kernel
still manages to have a reverse throughput of 1.

21

Three adds. A kernel of three adds, however, will not be able to run in a single cycle:
1 $ echo -e 'add x1,x2,x3
2 add x4,x5,x6
3 add x7,x8,x9' | llvm-mca --march=aarch64 --mcpu=cortex-a72 --timeline -
4

5 Iterations: 100
6 Instructions: 300
7 Total Cycles: 153
8 Total uOps: 300
9

10 Dispatch Width: 3
11 uOps Per Cycle: 1.96
12 IPC: 1.96
13 Block RThroughput: 1.5
14

15 [...]
16

17 Resource pressure per iteration:
18 [0] [1.0] [1.1] [2] [3] [4] [5] [6]
19 - 1.50 1.50 - - - - -
20

21 Resource pressure by instruction:
22 [0] [1.0] [1.1] [2] [3] [4] [5] [6] Instructions:
23 - 0.50 0.50 - - - - - add x1, x2, x3
24 - 0.50 0.50 - - - - - add x4, x5, x6
25 - 0.50 0.50 - - - - - add x7, x8, x9
26

27

28 Timeline view:
29 01234567
30 Index 0123456789
31

32 [0,0] DeER add x1, x2, x3
33 [0,1] DeER add x4, x5, x6
34 [0,2] D=eER. . . . add x7, x8, x9
35 [1,0] .DeER. . . . add x1, x2, x3
36 [1,1] .D=eER . . . add x4, x5, x6
37 [1,2] .D=eER . . . add x7, x8, x9
38 [...]

The resource pressure by iteration view confirms that we exceed the integer arithmetic
capacity of the processor for a single cycle. This is correctly reflected in the timeline view: the
instruction [0,2] starts executing only at cycle 3, along with [1,0].

Load, store and two adds. A kernel of one load, two adds and one store should, ports-wise,
fit in a single cycle. However, llvm-mca finds for this kernel a reverse throughput of 1.3:

1 $ echo -e 'ldr x1,[x2]
2 add x3,x4,x5
3 add x6,x7,x8
4 str x9,[x10]' | llvm-mca --march=aarch64 --mcpu=cortex-a72 --timeline -
5

6 Iterations: 100
7 Instructions: 400
8 Total Cycles: 139
9 Total uOps: 400

10

11 Dispatch Width: 3
12 uOps Per Cycle: 2.88
13 IPC: 2.88
14 Block RThroughput: 1.3
15

22

16 [...]
17

18 Resource pressure per iteration:
19 [0] [1.0] [1.1] [2] [3] [4] [5] [6]
20 - 1.00 1.00 1.00 - 1.00 - -
21

22 Resource pressure by instruction:
23 [0] [1.0] [1.1] [2] [3] [4] [5] [6] Instructions:
24 - - - 1.00 - - - - ldr x1, [x2]
25 - - 1.00 - - - - - add x3, x4, x5
26 - 1.00 - - - - - - add x6, x7, x8
27 - - - - - 1.00 - - str x9, [x10]
28

29

30 Timeline view:
31 012345678
32 Index 0123456789
33

34 [0,0] DeeeeER . . . ldr x1, [x2]
35 [0,1] DeE---R . . . add x3, x4, x5
36 [0,2] DeE---R . . . add x6, x7, x8
37 [0,3] .DeE--R . . . str x9, [x10]
38 [1,0] .DeeeeER . . . ldr x1, [x2]
39 [1,1] .DeE---R . . . add x3, x4, x5
40 [1,2] . DeE--R . . . add x6, x7, x8
41 [1,3] . DeE--R . . . str x9, [x10]

While the resource pressure views confirm that the ports are able to handle this kernel in
a single cycle, the timeline shows that it is in fact the frontend that stalls the computation.
As only three instructions may be decoded and issued per cycle, the backend is not fed with
enough instructions per cycle to reach a reverse throughput of 1.

1.2.3 Definitions

Throughput and reciprocal throughput

Given a kernel K of straight-line assembly code, we have referred to K as the reciprocal
throughput of K, that is, how many cycles K will require to complete its execution in steady-state.
We define this notion here more formally.

Notation (Kn)

Given a kernel K and a positive integer n ∈ N∗, we note Kn the kernel K repeated n times,
that is, the instructions of K concatenated n times.

Definition (C(K))

The number of cycles of a kernel K is defined, in steady-state, as the number of elapsed
cycles from the moment the first instruction of K starts to be decoded to the moment the
last instruction of K is issued.

We note C(K) the number of cycles of K.
We extend this definition so that C(∅) = 0; however, care must be taken that, as

we work in steady-state, this ∅ must be in the context of a given kernel (ie. we run K
until steady-state is reached, then consider how many cycles it takes to execute 0 further
instructions). This context is clarified by noting C

(
K0).

23

Due to the pipelined nature of execution units, this means that the same instruction of each
iteration of K will be retired — ie. yield its result — every steady-state execution time. For
this reason, the execution time is measured until the last instruction is issued, not retired.

Lemma (Periodicity of C
(
Kn+1)− C (Kn))

Given a kernel K, the sequence
(
C
(
Kn+1)− C (Kn)

)
n∈N is periodic, that is, there exists

p ∈ N∗ such that

∀n ∈ N, C
(
Kn+1

)
− C (Kn) = C

(
Kn+p+1

)
− C

(
Kn+p

)
We note this period P(K).

Proof. The number of CPU resources that can be shared between instructions in a processor
is finite (and relatively small, usually on the order of magnitude of 10). These resources
are typically the number of µOPs issued for each port in the current cycle, the number of
decoded instructions, total number of issued µOPs this cycle and such.

For each of these resources, their number of possible states is also finite (and also small).
Thus, the total number of possible states of a processor at the end of a kernel iteration
cannot be higher than the combination of those states.

For a given kernel K, We note σ(K) the CPU state reached after executing K, in
steady-state.

Given a kernel K, the set {σ(Kn), n ∈ N} is a subset of the total set of possible states
of the processor, and is thus finite — and, in all realistic cases, is usually way smaller than
the full set, given that only a portion of those resources are used by a kernel.

We further note that, for all n ∈ N, σ(Kn+1) is function of only the processor considered,
K and σ(Kn): indeed, a steady-state for Kn is also a steady-state for Kn+1 and, knowing
σ(Kn), the execution can be continued for the following K, reaching σ(Kn+1).

Thus, by the pigeon-hole principle, there exists p ∈ N such that σ(K) = σ(Kp+1). By
induction, as each state depends only on the previous one, we thus obtain that (σ(Kn))n

is periodic of period p. As we consider only the execution’s steady state, the sequence is
periodic from rank 0.

As the number of cycles needed to execute K only depend on the initial state of the
processor, we thus have

∀n ∈ N, C
(
Kn+1

)
− C (Kn) = C

(
Kn+p+1

)
− C

(
Kn+p

)

Definition (Reciprocal throughput of a kernel)

The reciprocal throughput of a kernel K, noted K and measured in cycles per iteration, is
also called the steady-state execution time of a kernel.

We note p = P(K) ∈ N∗ the period of C
(
Kn+1)− C (Kn) (by the above lemma), and

define
K = C (Kp)

p

We define this as the average on a whole period because subsequent kernel iterations may
“share” a cycle.

24

Example

Let K be a kernel of three instructions, and assume that a given processor can only issue
two instructions per cycle, but has no other bottleneck for K. Then, C(K) = 2, as three
instructions cannot be issued in a single cycle; yet C

(
K2) = 3, as six instructions can

be issued in only three cycles. In this case, the period p is clearly 2. Thus, in this case,
K = 1.5.

Remark
As C(K) depends on the microarchitecture of the processor considered, the throughput K
of a kernel K implicitly depends on the processor considered.

Lemma

Let K be a kernel and p = P(K). For all n ∈ N such that n = kp + r, with k, r ∈ N,
1 ≤ r ≤ p,

C (Kn) = kC (Kp) + C (Kr)

Proof. From the previous lemma instantiated with n = 0, we have

C
(
K1
)
− C

(
K0
)

= C
(
Kp+1

)
− C (Kp)

⇐⇒ C (Kp) = C
(
Kp+1

)
− C

(
K1
)

and thus by induction, ∀m ∈ N, C
(
Km+p

)
− C (Km) = C (Kp).

Thus, if k = 0, the property is trivial. If k = 1, it is a direct application of the above:

C
(
Kp+r

)
= C (Kp) + C (Kr)

We prove by induction the cases for k > 1.

Lemma

Given a kernel K,
C(Kn)

n
−−−→
n→∞

K

Furthermore, this convergence is linear:∣∣∣∣C (Kn)
n

−K
∣∣∣∣ = O

(1
n

)

Proof. Let n ∈ N∗ and p = P(K) ∈ N∗ the periodicity by the above lemma.
Let k, r ∈ N∗ such that n = kp + r, 1 ≤ r ≤ p.

25

C (Kn) = k · C (Kp) + C (Kr) (by lemma)

= kp
C (Kp)

p
+ C (Kr)

= kpK + C (Kr)

=⇒
∣∣∣C (Kn)− nK

∣∣∣ =
∣∣∣kpK + C (Kr)− (kp + r)K

∣∣∣
=
∣∣∣C (Kr)− rK

∣∣∣
≤ C (Kr) + rK (all is positive)

≤
(

max
m≤p

C (Km)
)

+ pK

This last right-hand expression is independent of n, which we note M . Dividing by n,
we obtain ∣∣∣∣C (Kn)

n
−K

∣∣∣∣ ≤ M

n

from which both results follow.

Throughout this manuscript, we mostly use reciprocal throughput as a metric, as we find it
more relevant from an optimisation point of view — an opinion we detail in chapter 4. However,
the throughput of a kernel is most widely used in the literature in its stead.

Definition (Throughput of a kernel)

The throughput of a kernel K, measured in instructions per cycle, or IPC, is defined as the
number of instructions in K, divided by the steady-state execution time of K:

IPC(K) = |K|
K

In the literature or in analyzers’ reports, the throughput of a kernel is often referred to as
its IPC (its unit).

Notation (Experimental measure of K)

We note KM(n) the experimental measure of K, realized by:
— sampling the hardware counter of total number of instructions retired and the

counter of total number of cycles elapsed,
— executing Kn,
— sampling again the same counters, and noting respectively ∆nret and ∆nC their

differences,

— noting KM(n) = ∆nC · |K|
∆nret

, where |K| is the number of instructions in K.

Lemma

For any kernel K, KM(n) −−−→
n→∞

K.

26

Proof. For an integer number of kernel iterations n, ∆nret/|K| = n. While measurement
errors may make ∆nret fluctuate slightly, this fluctuation will be below a constant threshold.∣∣∣∣∆nret

|K|
− n

∣∣∣∣ ≤ Eret

The same way, and due to the pipelining effects we noted below the definition of K,

|∆nC − C(Kn)| ≤ EC

with EC a constant.
As those errors are constant, while other quantities are linear, we thus have

KM(n) = ∆nC
∆nret/|K|

−−−→
n→∞

C(Kn)
n

and, composing limits with the previous lemma, we thus obtain

KM(n) −−−→
n→∞

K

Given this property, we will use K to refer to KM(n) for large values of n in this manuscript
whenever it is clear that this value is a measure.

Basic block of an assembly-level program

Code analyzers are meant to analyze sections of straight-line code, that is, portions of code
which do not contain control flow. As such, it is convenient to split the program into basic blocks,
that is, portions of straight-line code linked to other basic blocks to reflect control flow. We
define this notion here formally, to use it soundly in the following chapters of this manuscript.

Notation

For the purposes of this section,
— we formalize a segment of assembly code as a sequence of instructions;
— we confuse an instruction with its address.
An instruction is said to be a flow-altering instruction if this instruction may alter

the normal control flow of the program. This is typically true of jumps (conditional or
unconditional), function calls, function returns, …

An address is said to be a jump site if any flow-altering instruction in the considered
sequence may alter control to this address (and this address is not the natural flow of the
program, eg. in the case of a conditional jump).

Definition (Basic block decomposition)

Consider a sequence of assembly code A. We note the JA the set of jump sites of A, FA

the set of flow-altering instructions of A. As each element of those sets is the address of an
instruction, we note F +

A the set of addresses of instructions directly following an instruction
from FA — note that, as instructions may be longer than one byte, it is not sufficient to
increase by 1 each address from FA.

27

We note SA = JA ∪ F +
A . We split the instructions from A into BB(A), the set of

segments that begin either at the beginning of A, or at instructions from SA — less
formally, we split A at each point from SA, including each boundary in the following
segment.

The members of BB(A) are the basic blocks of A, and are segments of code which, by
construction, will always be executed as straight-line code, and whose execution will always
begin from their first instruction.

Remark
This definition gives a direct algorithm to split a segment of assembly code into basic
blocks, as long as we have access to a semantics of the considered assembly that indicates
whether an instruction is flow-altering, and if so, what are its possible jump sites.

1.3 State of the art
Performance models for CPUs have been previously studied, and applied to static code

performance analysis.

1.3.1 Manufacturer-sourced data

Manufacturers of CPUs are expected to offer optimisation data for software compiled for
their processors. This data may be used by compilers authors, within highly-optimized libraries
or in the optimisation process of critical sections of programs that require very high performance.

Intel provides its Intel® 64 and IA-32 Architectures Optimization Reference Manual [23b],
regularly updated, whose nearly 1,000 pages give relevant details to Intel’s microarchitectures,
such as block diagrams, pipelines, ports available, etc. It further gives data tables with
throughput and latencies for some instructions. While the manual provides a huge collection of
important insights — from the optimisation perspective — on their microarchitectures, it lacks
exhaustive and (conveniently) machine-parsable data tables and does not detail port usages of
each instruction.

ARM typically releases optimisation manuals that are way more complete for its microarchi-
tectures, such as the Cortex A72 optimisation manual [15].

AMD, since 2020, releases lengthy and complete optimisation manuals for its microarchi-
tecture. For instance, the Zen4 optimisation manual [23d] contains both detailed insights on
the processor’s workflow and ports, and a spreadsheet of about 3,400 x86 instructions — with
operands variants broken down — and their port usage, throughput and latencies. Such an
effort, which certainly translates to a non-negligible financial cost to the company, showcases
the importance and recent expectations on such documents.

As a part of its EXEgesis project [Goo], Google made an effort to parse Intel’s microarchi-
tecture manuals, resulting in a machine-usable data source of instruction details. The extracted
data has since then been contributed to the llvm compiler’s data model. The project, however,
is no longer developed.

1.3.2 Third-party instruction data

The lack, for many microarchitectures, of reliable, exhaustive and machine-usable data
for individual instructions has driven academics to independently obtain this data from an
experimental approach.

28

Since 1996, Agner Fog has been maintaining tables of values useful for optimisation purposes
for x86 instructions [Fog20]. These tables, still maintained and updated today, are often
considered very accurate. They are the result of benchmarking scripts developed by the author,
subject to manual — and thus tedious, given the size of microarchitectures — analysis, and
are mainly conducted through hardware counters measurements. The main issue, however, is
that those tables are generated through the use of hand-picked instructions and benchmarks,
depending on specific hardware counters and features specific to some CPU manufacturers. As
such, while these tables are very helpful on the supported CPUs for x86, the method does not
scale to the abundance of CPUs on which such tables may be useful — for instance, ARM
processors, embedded platforms, etc.

Following the work of Agner Fog, Andreas Abel and Jan Reineke have designed the uops.info
framework [AR19], striving to automate the previous methodology. Their work, providing data
tables for the vast majority of instructions on many recent Intel microarchitectures, has been
recently enhanced to also support AMD architectures.

The uops.info approach, detailed in their article, consists in finding so-called blocking
instructions for each port which, used in combination of the instruction to be benchmarked and
port-specific hardware counters, yield a detailed analysis of the port usage of each instruction

— and even its break-down into µOPs. This makes for an accurate and robust approach, but
also limits it to microarchitectures offering such counters, and requires a manual analysis of
each microarchitecture to be supported in order to find a fitting set of blocking instructions.
Although we have no theoretical guarantee of the existence of such instructions, this should
never be a problem, as all pragmatic microarchitecture design will lead to their existence.

1.3.3 Code analyzers and their models

Going further than data extraction at the individual instruction level, academics and
industrials interested in this domain now mostly work on code analyzers, as described in
section 1.2 above. Each such tool embeds a model — or collection of models — on which its
inference is based, and whose definition, embedded data and obtention method varies from tool
to tool. These tools often use, to some extent, the data on individual instructions obtained
either from the manufacturer or the third-party efforts mentioned above.

The Intel Architecture Code Analyzer (IACA) [Intb], released by Intel, is a fully-closed source
analyzer able to analyze assembly code for Intel microarchitectures only. It draws on Intel’s own
knowledge of their microarchitectures to make accurate predictions. This accuracy made it very
helpful to experts aiming to do performance debugging on supported microarchitectures. Yet,
being closed-source and relying on data that is partially unavailable to the public, the model is
not totally satisfactory to academics or engineers trying to understand specific performance
results. It also makes it vulnerable to deprecation, as the community is unable to fork the
project — and indeed, IACA has been discontinued by Intel in 2019. Thus, IACA does not
support recent microarchitectures, and its binary was recently removed from official download
pages.

In the meantime, the LLVM Machine Code Analyzer — or llvm-mca — was developed
as an internal tool at Sony, and was proposed for inclusion in llvm in 2018 [Bia18]. This
code analyzer is based on the data tables that llvm — a compiler — has to maintain for each
microarchitecture in order to produce optimized code. The project has since then evolved to
be fairly accurate, as seen in the experiments later presented in this manuscript. It is the
alternative Intel offers to IACA subsequently to its deprecation.

Another model, Osaca, was developed by Jan Laukemann et al. starting in 2017 [Lau+18;
Lau+19]. Its development stemmed from the lack (at the time) of an open-source — and thus,
open-model — alternative to IACA. As a data source, Osaca makes use of Agner Fog’s data

29

tables or uops.info. It still lacks, however, a good model of frontend and data dependencies,
making it less performant than other code analyzers in our experiments later in this manuscript.

Taking another approach entirely, Ithemal is a machine-learning-based code analyzer striving
to predict the reciprocal throughput of a given kernel. The necessity of its training resulted in
the development of BHive, a benchmark suite of kernels extracted from real-life programs and
libraries, along with a profiler measuring the runtime, in CPU cycles, of a basic block isolated
from its context. This approach, in our experiments, was significantly less accurate than those
not based on machine learning. In our opinion, its main issue, however, is to be a black-box
model: given a kernel, it is only able to predict its reverse throughput. Doing so, even with
perfect accuracy, does not explain the source of a performance problem: the model is unable
to help detecting which resource is the performance bottleneck of a kernel; in other words, it
quantifies a potential issue, but does not help in explaining it — or debugging it.

In yet another approach, PMEvo [RH20] uses genetic algorithms to infer, from scratch and
in a benchmarks-oriented approach, a port-mapping of the processor it is running on. It is,
to the best of our knowledge, the first tool striving to compute a port-mapping model in a
fully-automated way, as Palmed does (see chapter 2 later), although through a completely
different methodology. As detailed in Palmed’s article [Der+22], it however suffers from a lack
of scalability: as generating a port-mapping for the few thousands of x86-64 instructions would
be extremely time-consuming with this approach, the authors limit the evaluation of their tool
to around 300 most common instructions.

Abel and Reineke, the authors of uops.info, recently released uiCA [AR22], a code analyzer
for Intel microarchitectures based on uops.info tables on one hand as a port model, and on
manual reverse-engineering through the use of hardware counters to model the frontend and
pipelines. We found this tool to be very accurate (see experiments later in this manuscript),
with results comparable with llvm-mca. Its source code — under free software license — is
self-contained and reasonably concise (about 2,000 lines of Python for the main part), making
it a good basis and baseline for experiments. It is, however, closely tied by design to Intel
microarchitectures, or microarchitectures very close to Intel’s ones.

30

Chapter 2

Palmed: automatically modelling the
backend

The state-of-the-art tools presented in section 1.3 are already capable of good microarchi-
tectural analysis and predictions in many aspects. One thing, however, that we found lacking,
was a generic method to obtain a model for a given microarchitecture. Indeed, while eg. IACA
and uops.info are performant and quite exhaustive models of Intel’s x86-64 implementations,
they are restricted to Intel CPUs — and few others for uops.info. These models were, at least
up to a point, handcrafted. While IACA is based on insider’s knowledge from Intel (and thus
would not work for eg. AMD), uops.info’s method is based on specific hardware counters and
handpicked instructions with specific properties.

While these methods provide great models, they only apply to the covered CPUs. In the
meantime, many new CPUs are released, some for commercial applications, some others for
specific domains, fostering less attention from microarchitecture specialists. For those CPUs not
covered by these specific models, a generic method to extract a model from running benchmarks
on a processor could be beneficial to performance debuggers.

While PMEvo [RH20] laid a first milestone in this direction (see section 1.3), their methodology
struggles to scale to the full instruction set of a CPU, as we show in this chapter. To this end,
Nicolas Derumigny designed Palmed during his PhD work. Although the theoretical work at
the core of Palmed is his, I contributed significantly to this project during the first period of my
own PhD.

In this chapter, sections 2.1 through 2.3 describe Palmed, and present what is mostly not
my own work, but introduce important concepts for this manuscript. Sections 2.4 and later
describe my own work on this project.

2.1 Resource models

2.1.1 Usual representation: tripartite disjunctive graph

As we saw earlier in section 1.1, the behaviour of a CPU’s backend can be, throughput-wise,
characterized by the behaviour of its ports. Thus, a throughput model of the backend consists
in a mapping of the ISA’s instructions to execution ports of the backend, called a port mapping.

The mapping, however, is not direct: we also saw in section 1.1 that instructions are
themselves broken down into a number of micro-operations (µOPs), which all have to be
executed. Each of those µOPs are then scheduled on one of the compatible execution ports of
the CPU. A port mapping, thus, is actually a tripartite graph: a first layer mapping instructions
to µOPs, followed by a second layer mapping µOPs to ports. In Figure 2.1, we show such a
port mapping for a few x86-64 instructions on the SKL-SP microarchitecture. The uops.info

31

DIVPS VCVTT ADDSS BSR JNLE JMP

p0 p1 p6

1 1 1

Figure 2.1 – Port mapping and maximum port throughput for a few SKL-SP instructions.

framework [AR19], for instance, produces such a model: each instruction’s mapping is described
as a string, eg. VCVTT 1 is described as 1*p0+1*p01.

The two layers of such a model play a very different role. Indeed, the top layer (instructions
to µOPs) can be seen as an and, or conjunctive layer: an instruction is decomposed into each of
its µOPs, which must all be executed for the instruction to be completed. The bottom layer
(µOPs to ports), however, can be seen as an or, or disjunctive layer: a µOP must be executed
on one of those ports, each able to execute this µOP. This can be seen in the example from
uops.info above: VCVTT is decomposed into two µOPs, the first necessarily executed on port
0, the second on port either 0 or 1.

We also saw that on modern CPUs, ports and computation units are most of the time
fully-pipelined; that is, each port can execute a µOP each cycle, even through actually executing
a µOP may take multiple cycles. Thus, instruction latencies are not needed to compute the
throughput of a kernel without dependencies in steady-state, and a port mapping is sufficient.

As some µOPs are compatible with multiple ports, the number of cycles required to run
one occurrence of a kernel is not trivial. An assignment, for a given kernel, of its constitutive
µOPs to ports, is a schedule — the number of cycles taken by a kernel given a fixed schedule is
well-defined. The throughput of a kernel is defined as the throughput under an optimal schedule
for this kernel.

Example (Kernel throughputs with port mappings)

The kernel K1 = DIVPS + BSR + JMP can complete in one cycle: K1 = 1. Indeed, according
to the port mapping in Figure 2.1, each of those instructions is decoded into a single µOP,
each compatible with a single, distinct port. Thus, the three instructions can be issued in
parallel in one cycle.

The same goes for K2 = ADDSS + BSR, although it is a bit less trivial. Both instructions
decode to a single µOP. BSR can only be executed by port p1, while ADDSS can be executed
either by port p0 or p1: by picking p0, both instructions can be executed in a single cycle
in steady state, hence K2 = 1.

The kernel K3 = ADDSS+2×BSR, however, needs at least two cycles to be executed: BSR
can only be executed on port p1, which can execute at most one µOP per cycle. K3 = 2.

The instruction ADDSS alone, however, can be executed twice per cycle: once on p0 and
once on p1. The kernel K4 = 2× ADDSS+ BSR can thus be executed in 1.5 cycles in average:
K4 = 1.5.

The following tables present an optimal schedule for each kernel K2,K3,K4. Each row
represents a cycle.

1. The precise variant is VCVTTSD2SI (R32, XMM)

32

K2

p0 p1

ADDSS BSR
ADDSS BSR

...

K3

p0 p1

ADDSS BSR
∅ BSR

ADDSS BSR
∅ BSR

...

K4

p0 p1

ADDSS BSR
ADDSS BSR
ADDSS ADDSS

...

Finding the throughput of the kernels presented above is easy enough, as the kernels involve
few µOPs compatible with many ports. However, in the general case, finding an optimal
schedule becomes more complicated; in fact, it can be expressed as a flow problem — described
in Section 3.5.1 of Fabian Gruber’s PhD thesis [Gru19].

2.1.2 Dual representation: conjunctive resource mapping

The method behind Palmed is based on the observation that a port mapping admits a dual
representation, where the bottom layer is not expressed as an “or”, but also as an “and”.

In this dual model, an instruction such as ADDSS does not use either p0 or p1, but instead
uses once the combined resource r01, which has a throughput of 2. Instructions such as BSR,
using only p1, are using both r1 and r01. In Figure 2.2a, we present the resource mapping
equivalent to the port mapping presented in Figure 2.1. As both top and bottom layers are now
conjunctive, we remove altogether the intermediate nodes: an instruction directly consumes
resources. We then normalize this graph to resources with a unitary throughput by dividing
each edge’s weight by its corresponding resource throughput. The normalized mapping for
ADDSS and BSR is presented in Figure 2.2b.

The construction of this dual model, and its equivalence to the original, disjunctive model is
detailed in the extended version of the full article on Palmed [Der+22].

Finding the throughput of a kernel with this conjunctive representation does not require
the solving of an optimisation problem. The number of cycles required by a kernel is simply the
maximum load over all resources.

More formally, we note ρi,r the weight of the edge between instruction i and resource r, and
R the set of resources. We consider a kernel K =

∑
i∈K σi,K × i. Then, in steady-state, the

backend would need K cycles to execute K, and

K = max
r∈R

(∑
i∈K

σi,K × ρi,r

)
(2.1)

DIVPS VCVTT ADDSS BSR JNLE JMP

r0 r01 r1

1 2 1

r016

3

r06

2

r6

1

2

2

(a) Full resource mapping

ADDSS BSR

r01 r1

1/2
1/2

1

r016

1/3
1/3

(b) Normalized

Figure 2.2 – Abstract resource mapping (conjunctive form) and maximum resource throughput
for a few SKL-SP instructions.

33

Basic instructions

mapping

saturating
kernels

Model

LP2LP1
• resource characteristics
• saturating kernels

until
convergence

Core Mapping

LP LP

∀A∈ ,
LPAUX(A)

Complete
Mapping

LP

Quadratic
benchmarks

Classes of
instructions

• maxclique
• min ≼

Basic
Instructions

Selection

Hierarch.
clustering Graph

ISA instructions

Figure 2.3 – High-level view of Palmed’s architecture

Example

The throughputs of the previous kernels can be computed using the conjunctive resource
model instead.

K2

r0 r1 r01

ADDSS 1/2

BSR 1 1/2

Total 0 1 1

=⇒ K2 = 1

K3

r0 r1 r01

ADDSS 1/2

2×BSR 2 1

Total 0 2 1.5

=⇒ K3 = 2

K4

r0 r1 r01

2×ADDSS 1
BSR 1 1/2

Total 0 1 1.5

=⇒ K4 = 1.5

The drawback of this conjunctive model, however, is that it generates a theoretically
combinatorial number of new resources. This, however, does not happen in practice: a combined
resource is only necessary if at least one µOP is supported by this set of combined ports. On
real processors, ports are not random, but instead have a well-defined set of functions, eg.
arithmetics, memory access, etc. Thus, only a very limited number of combined resources are
necessary.

2.2 Palmed design
Palmed is a tool aiming to construct a resource mapping for a CPU, in a fully automated

way, based on the execution of well-chosen benchmarks. As its goal is to construct a resource
mapping, its only concern is backend throughput — in particular, dependencies are entirely
ignored. In-order effects are not modelled either; in fact, Palmed defines a kernel as a multiset
of instructions, discarding instructions ordering at once.

The general idea behind Palmed is that, as we saw above, the execution time of a kernel is
described by a resource model through Equation 2.1. We can, however, reverse the problem: if
we measure K, the only unknown parameters in Equation 2.1 become the ρi,r; that is, the weight
of the edges in the resource model for the CPU under scrutiny. Given enough, well-chosen
couples

(
K,K

)
, it should then be possible to solve the system for the ρi,r coefficients, thus

building a resource model.
This section does not detail entirely Palmed, but rather coarsely describes the general

approach; the full methodology can be found in the full article [Der+22]. Its main steps and
components are sketched in Figure 2.3.

Palmed starts off with a list of instructions available in the ISA, I, as well as a description
of their legal parameters. This list can be obtained using a decompiler.

The first block, Basic Instructions Selection, benchmarks every couple of instructions — a

34

step we call quadratic benchmarks. These quadratic benchmarks are used to group together
instructions into classes of instructions that behave identically from the backend’s point of view.
Formally, the classes are built as equivalence classes for the relation ∼:

a ∼ b ⇐⇒ ∀i ∈ I, a + i = b + i

To accommodate for measurement imprecisions and fluctuations, this strict equality is in practice
relaxed; the classes are obtained by hierarchical clustering [War63], splitting the tree into classes
by maximizing the silhouette [Rou87]. This clustering into classes is reused later in chapter 3.

The first block then finishes by applying heuristics to select basic instructions, that is,
instructions that stress as few resources as possible, with the highest possible throughput. These
instructions can later be combined with others to detect whether they stress a resource.

The second block, Core Mapping, builds benchmarks against these basic instructions to
discover, for each resource r, a kernel — that should be as simple as possible — that saturates
it: adding any instruction that uses r to this kernel should increase its execution time. These
saturating kernels are discovered with successive Linear Programming (LP) passes, using the
Gurobi Optimizer [Gur].

These kernels are then used in a final block, Complete Mapping, to find the ρi,r coefficients
for every instruction, constituting the final model.

2.3 Measuring a kernel’s throughput: Pipedream

To build a mapping of a CPU, Palmed fundamentally depends on the ability to measure
the execution time K of a kernel K. However, as we saw above, Palmed defines a kernel as
a multiset of instructions, and makes hypotheses on the measures accordingly. Specifically,
this measure should reflect only out-of-order behaviours, without any dependency between
instructions. The behaviour should be purely the CPU’s; specifically, no memory effect should
be accounted for, and thus, data should be L1-resident. Finally, even if hardware counters could
be used to provide such a metric, they should be ignored, as Palmed aims to be as universal as
possible and should avoid depending on vendor-specific counters.

For this purpose, we use Pipedream as a benchmarking backend, a tool initially written
by Fabian Gruber and described in his PhD thesis [Gru19], with further developments from
Nicolas Derumigny and Christophe Guillon. Originally written for a broader purpose,
Pipedream is able to generate assembly code to benchmark a multiset of instructions, fitting
the constraints mentioned above. The generated assembly uses the following high-level shape:

1 for NUM_MEASURES:
2 measure_start()
3 for NUM_ITER:
4 kernel
5 kernel
6 ...
7 kernel
8 measure_stop()

The kernel is unrolled enough times so that the body of the innermost loop has at least
UNROLL_SIZE instructions; and NUM_ITER is defined so that UNROLL_SIZE × NUM_ITER ≥ TOTAL_INSN.
UNROLL_SIZE, TOTAL_INSN and NUM_MEASURES are parameters of the benchmark generation.

Pipedream must be able to distinguish between variants of instructions with the same
mnemonic — eg. mov — but different operand kinds, altering the semantics and performance of
the instruction — such as a mov loading from memory versus a mov between registers. To this
end, Pipedream represents instructions fully qualified with their operands’ kind — this can be
seen as a process akin to C++’s name mangling.

35

As Pipedream gets a multiset of instructions as a kernel, these instructions’ arguments must
be instantiated to turn them into actual assembly code — that is, turn eg. ADD_GPR64i64_IMMi8
(the x86-64 variant of add taking as arguments a general purpose regsiter of 64 bits and an
immediate of 8 bits) into addq $0x10, %rdx. There is no particular issue to instantiate immediates;
however, allocating registers and memory operands requires some care, as no dependency must
be created between instructions.

Register operands. For each type of register of the ISA (general purpose, vector, …), the
registers are split into a read and a write pool. The read pool only contains the maximum
number of registers of this type needed by one instruction of the kernel; while the write pool
contains the rest. The registers are then allocated for each instruction as follows.

— The read operands are allocated registers from the read pool without specific care, as
read-after-read does not create a dependency between two instructions.

— The written operands are allocated registers from the write pool in a round-robin
fashion, to maximize the distance between two reuses of the same register. Indeed, on
some architectures, write-after-write dependencies do not allow full parallelism; while
on some others, some instructions’ operands are both read and written, resulting in
read-after-write dependencies.

Memory operands. At startup, a memory arena small enough to fit into the L1 cache is
allocated. This arena is again split into a read and a write pool.

— In direct register addressing mode — eg. movq %rax, (%rbx) in x86-64 —, the same address
is always reused (one for reads and one for writes).

— In base-index-displacement mode, the same base address is always reused; displacements
are used in a round-robin fashion 2.

These two allocation policies are meant to ensure that, whenever possible, no dependency will
be created between two instructions: a dependency should only appear when write-after-write
dependencies matter, and not enough registers of a kind are available in the architecture — in
this case, the same register may be reused too early.

To finally ensure that data is always L1-resident, warm-up rounds are performed before
actually measuring the inner loop. As the memory area is small enough, and no other memory
access is made during the measure, the memory area is subsequently L1-resident. This also has
the effect to warm up the branch predictor.

Finally, the generated assembly is assembled into a shared library object, and invoked with a
lightweight C harness. Using the PAPI [Muc+99] library, it measures and records two standard
and omnipresent hardware events: the number of elapsed cycles (PAPI_TOT_CYC) and the number
of completed instructions (PAPI_TOT_INS).

2.4 Finding basic blocks to evaluate Palmed

In the context of all that is described above, my main task in the environment of Palmed
was to build a system able to evaluate a produced mapping on a given architecture.

Some tools, such as PMEvo [RH20], use randomly-sampled basic blocks for their evaluation.
However, random generation may yield basic blocks that are not representative of the vari-
ous workloads our model might be used on. Thus, while arbitrarily or randomly generated
microbenchmarks were well suited to the data acquisition phase needed to generate the model,
the kernels on which the model would be evaluated could not be arbitrary, and must instead
come from real-world programs.

2. On ARM, a displacement of 0 is always used, resulting in the same accesses as direct register addressing.

36

2.4.1 Benchmark suites

Models generated by Palmed are meant to be used on basic blocks that are computationally
intensive — so that the backend is actually the relevant resource to monitor, compared to eg.
frontend- or input/output-bound code —, running in steady-state — that is, which is the body
of a loop long enough to be reasonably considered infinite for performance modelling purposes.
The basic blocks used to evaluate Palmed should thus be reasonably close from these criteria.

For this reason, we evaluate Palmed on basic blocks extracted from two well-known benchmark
suites: Polybench and SPEC CPU 2017.

Polybench is a suite of benchmarks built out of 30 kernels of numerical computation [PY16].
Its benchmarks are domain-specific and centered around scientific computation, mathematical
computation, image processing, etc. As the computation kernels are clearly identifiable in the
source code, extracting the relevant basic blocks is easy, and fits well for our purpose. It is
written in C language. Although it is not under a free/libre software license, it is free to use
and open-source.

SPEC CPU 2017 is a suite of benchmarks meant to be CPU intensive [BLK18]. It is
composed of both integer and floating-point based benchmarks, extracted from (mainly open
source) real-world software, such as gcc, imagemagick, … Its main purpose is to obtain metrics
and compare CPUs on a unified workload; it is however commonly used throughout the literature
to evaluate compilers, optimizers, code analyzers, etc. It is split into four variants: integer and
floating-point, combined with speed — time to perform a single task — and rate — throughput
for performing a flow of tasks. Most benchmarks exist in both speed and rate mode. The
SPEC suite is under a paid license, and cannot be redistributed, which makes peer-review and
replication of experiments — eg. for artifact review — complicated.

2.4.2 Manually extracting basic blocks

The first approach that we used to extract basic blocks from the two benchmark suites
introduced above, for the evaluation included in our article for Palmed [Der+22], was very
manual. We use different — though similar — approaches for Polybench and SPEC.

In the case of Polybench, we compile multiple versions of each benchmark (-O2, -O3 and
tiled using the Pluto optimizer [BRS07]). We then use QEMU [QEM] to extract translation blocks

— very akin to basic blocks — and an occurrence count for each of those. We finally select the
basic blocks that have enough occurrences to be body loops.

In the case of SPEC, we replace QEMU with the Linux perf profiler, as individual benchmarks
of the suite are heavier than Polybench benchmarks, making QEMU’s instrumentation overhead
impractical. While perf provides us with occurrence statistics, it does not chunk the program
into basic blocks; we use an external disassembler and heuristics on the instructions to do this
chunking. We describe both aspects — profiling and chunking — with more details below.

Altogether, this method generates, for x86-64 processors, 13 778 SPEC-based and 2 664
polybench-based basic blocks.

2.4.3 Automating basic block extraction

This manual method, however, has multiple drawbacks. It is, obviously, tedious to manually
compile and run a benchmark suite, then extract basic blocks using two collections of scripts
depending on which suite is used. It is also impractical that the two benchmark suites are
scrapped using very similar, yet different techniques: as the basic blocks are not chunked using
the same code, they might have slightly different properties.

Most importantly, this manual extraction is not reproducible. This comes with two problems.

37

— If the dataset was to be lost, or if another researcher wanted to reproduce our results,
the exact same dataset could not be identically recreated. The same general procedure
could be followed again, but code and scripts would have to be re-written, manually
typed and undocumented shell lines re-written, etc. Most importantly, the re-extracted
basic blocks may well be slightly different.

— The same consideration applies to porting the dataset to another ISA. Indeed, as the
dataset consists of assembly-level basic-blocks, it cannot be transferred to another ISA:
it has to be re-generated from source-level benchmarks. This poses the same problems
as the first point.

This second point particularly motivated us to automate the basic block extraction procedure
when Palmed — and the underlying Pipedream — were extended to produce mappings for
ARM processors.

Our automated extraction tool, benchsuite-bb, is able to extract basic blocks from Poly-
bench and SPEC. Although we do not use it to evaluate Palmed, it also supports the extraction
of basic blocks from Rodinia [Che+09], a benchmark suite targeted towards heterogeneous
computing, and exhibiting various usual kernels, such as K-means, backpropagation, BFS, …

For the most part, benchsuite-bb implements the manual approach used for SPEC. On
top of an abstraction layer meant to unify the interface to all benchmark suites, it executes the
various compiled binaries while profiling them through perf, and chunks the relevant parts into
basic blocks using a disassembler.

Profiling with perf. The perf profiler [Lin] is part of the Linux kernel. It works by sampling
the current program counter (as well as the stack, if requested, to obtain a stack trace) upon
either event occurrences, such as number of elapsed CPU cycles, context switches, cache misses,
…, or simply at a fixed, user-defined time frequency.

In our case, we use this second mode to uniformly sample the program counter across a run.
We recover the output of the profiling as a raw trace with perf report -D.

ELF natigation: pyelftools and capstone. To trace this program counter samplings back
to basic blocks, we then need to chunk the relevant sections of the ELF binary down to basic
blocks. For this, we use two tools: pyelftools and capstone.

The pyelftools Python library is able to parse and decode many informations contained
in an ELF file. In our case, it allows us to find the .text section of the input binary, search for
symbols, find the symbol containing a given program counter, extract the raw assembled bytes
between two addresses, etc.

The capstone disassembler, on the other hand, allows to disassemble a portion of assembled
binary back to assembly. It supports many ISAs, among which x86-64 and ARM, the two ISAs
we investigate in this manuscript. It is able to extract relevant details out of an instruction:
which operands, registers, … it uses; which broader group of instruction it belongs to; etc. These
groups of instructions, in our case, are particularly useful, as it allows us to find control flow
instructions without writing code specific to an ISA. These control-altering instructions are
jumps, calls and returns. We are also able to trace a (relative) jump to its jump site, enabling
us later to have a finer definition of basic blocks.

Extracting basic blocks. We describe the basic block extraction, given the perf-provided
list of sampled program counters, in Algorithm 1. For each program counter, we find the ELF
symbol it belongs to, and decompose this whole symbol into basic blocks — we memoize this
step to do it only once per symbol. We then bissect the basic block corresponding to the current
PC from the list of obtained basic blocks to count the occurrences of each block.

38

function bbsOfSymbol(symbol) . Memoized, computed only once per symbol
instructions ← disassemble(bytesFor(symbol)) . Uses both pyelftools and capstone
flowSites ← ∅
jumpSites ← ∅
for instr ∈ instructions do

if isControlFlow(instr) then
flowSites ← flowSites ∪ {next(instr).addr}
if isJump(instr) then

jumpSites ← jumpSites ∪ {instr.jump_addr}
return instructions.splitAt(flowSites ∪ jumpSites)

function bbsOfPcs(pcs)
occurences ← {}
for pc ∈ pcs do

bbs ← bbsOfSymbol(symbolOfPc(pc))
bb ← bissect(pc, bbs)
occurrences[bb] + +

return occurrences

Algorithm 1 – Basic block extraction procedure, given a perf-obtain list of program counters.

To split a symbol into basic blocks, we follow the procedure introduced by our formal
definition in section 1.2.3. We determine using capstone its set of flow sites and jump sites.
The former is the set of addresses just after a control flow instruction, while the latter is the set
of addresses to which jump instructions may jump. We then split the straight-line code of the
symbol using the union of both sets as boundaries.

Altogether, on x86-64, we retrieve 2 499 basic blocks on Polybench, and 13 383 basic blocks
on SPEC. The structure, dataset and runtime of both benchmark suite, however, makes it
significantly harder to gather real “kernels” on SPEC: while 724 of the Polybench basic blocks
were sampled more than 1 000 times, only 75 were so sampled in SPEC, and 668 were sampled
more than 100 times.

2.5 Evaluating Palmed

Evaluating Palmed on the previously gathered basic blocks now requires, on one hand, to
define evaluation metrics and, on the other hand, an evaluation harness to collect the throughput
predictions from Palmed and the other considered code analyzers, from which metrics will be
derived.

2.5.1 Evaluation harness

We implement into Palmed an evaluation harness to evaluate it both against native mea-
surement and other code analyzers.

We first strip each basic block gathered of its dependencies to fall into the use-case of Palmed
using Pipedream, as we did previously. This yields assembly code that can be run and measured
natively. The body of the most nested loop can also be used as an assembly basic block for
other code analyzers. However, as Pipedream does not support some instructions (control flow,
x86-64 divisions, …), those are stripped from the original kernel, which might denature the
original basic block.

To evaluate Palmed, the same kernel’s run time is measured:

1. natively on each CPU, using the Pipedream harness to measure its execution time;

39

2. using the resource mapping Palmed produced on the evaluation machine;
3. using the uops.info [AR19] port mapping, converted to its equivalent conjunctive resource

mapping 3;
4. using PMEvo [RH20], ignoring any instruction not supported by its provided mapping;
5. using IACA [Intb], by inserting assembly markers around the kernel and running the tool;
6. using llvm-mca [SL], by inserting markers in the Pipedream-generated assembly code and

running the tool.

The raw results are saved (as a Python pickle file) for reuse and archival.

2.5.2 Metrics extracted

As Palmed internally works with Instructions Per Cycle (IPC) metrics, and as all these
tools are also able to provide results in IPC, the most natural metric to evaluate is the error on
the predicted IPC. We measure this as a Root-Mean-Square (RMS) error over all basic blocks
considered, weighted by each basic block’s measured occurrences:

ErrRMS, tool =

√√√√ ∑
i∈BBs

weighti∑
j weightj

(
IPCi,tool − IPCi,native

IPCi,native

)2

This error metric measures the relative deviation of predictions with respect to a baseline.
However, depending on how this prediction is used, the relative ordering of predictions — that
is, which basic block is faster — might be more important. For instance, a compiler might use
such models for code selection; here, the goal would not be to predict the performance of the
kernel selected, but to accurately pick the fastest.

For this, we also provide Kendall’s τ coefficient [Ken38]. This coefficient varies between −1
(full anti-correlation) and 1 (full correlation), and measures how many pairs of basic blocks (i, j)
were correctly ordered by a tool, that is, whether

IPCi,native ≤ IPCj,native ⇐⇒ IPCi,tool ≤ IPCj,tool

Finally, we also provide a coverage metric for each tool; that is, which proportion of basic
blocks it was able to process.

The definition of able to process, however, varies from tool to tool. For IACA and llvm-mca,
this means that the analyzer crashed or ended without yielding a result. For uops.info, this
means that one of the instructions of the basic block is absent from the port mapping. PMEvo,
however, is evaluated in degraded mode when instructions are not mapped, simply ignoring
them; it is considered as failed only when no instruction at all in the basic block was present in
the model.

This notion of coverage is partial towards Palmed. As we use Pipedream as a baseline
measurement, instructions that cannot be benchmarked by Pipedream are pruned from the
benchmarks. Hence, Palmed has a 100 % coverage by construction — which does not mean that
is supports all the instructions found in the original basic blocks, but only that our methodology
is unable to process basic blocks unsupported by Pipedream.

2.5.3 Results

We run the evaluation harness on two different machines:

3. When this evaluation was made, uiCA [AR22] was not yet published. Since Palmed only provides a resource
mapping, but no frontend, the comparison to uops.info is fair.

40

https://docs.python.org/3/library/pickle.html

Palmed uops.info PMEvo IACA llvm-mca

SK
L

-S
P SP

E
C

17
P

ol
yb

en
ch

Z
E

N
1 SP

E
C

17
P

ol
yb

en
ch

p
re

d
ic

te
d
 /

 n
a
ti

v
e

IP
C

 r
a
ti

o

native IPC

Figure 2.4 – IPC prediction profile heatmaps — predictions closer to the red line are more
accurate. Predicted IPC ratio (Y) against native IPC (X)

SKL-SP ZEN1
SPEC2017 Polybench SPEC2017 Polybench

Palmed
Cov. (%) N/A N/A N/A N/A
Err. (%) 7.8 24.4 29.9 32.6
τK (1) 0.90 0.78 0.68 0.46

uops.info
Cov. (%) 99.9 100.0 N/A N/A
Err. (%) 40.3 68.1 N/A N/A
τK (1) 0.71 0.29 N/A N/A

PMEvo
Cov. (%) 71.3 66.8 71.3 66.8
Err. (%) 28.1 46.7 36.5 38.5
τK (1) 0.47 0.14 0.43 0.11

IACA
Cov. (%) 100.0 100.0 N/A N/A
Err. (%) 8.7 15.1 N/A N/A
τK (1) 0.80 0.67 N/A N/A

llvm-mca
Cov. (%) 96.8 99.5 96.8 99.5
Err. (%) 20.1 15.3 33.4 28.6
τK (1) 0.73 0.65 0.75 0.40

Table 2.1 – Accuracy of IPC predictions compared to Pipedream-based native executions on
SPEC 2017 and Polybench

41

— an x86-64 Intel SKL-SP-based machine, with two Intel Xeon Silver 4114 CPU, totalling
20 cores;

— an x86-64 AMD ZEN1-based machine, with a single AMD EPYC 7401P CPU with 24
cores.

As IACA only supports Intel CPUs, and uops.info only supports x86-64 machines and gives
only very rough information for ZEN architectures — without port mapping —, these two tools
were only tested on the SKL-SP machine.

The evaluation metrics for all three architecture and all five tools are presented in Table 2.1.
We further represent IPC prediction accuracy as heatmaps in Figure 2.4. A dark area at
coordinate (x, y) means that the selected tool has a prediction accuracy of y for a significant
number of microkernels with a measured IPC of x. The closer a prediction is to the red
horizontal line, the more accurate it is.

These results are analyzed in the full article [Der+22].

2.6 Other contributions
Using a database to enhance reproducibility and usability. Palmed’s method is driven
by a large number of Pipedream benchmarks. For instance, generating a mapping for an x86-64
machine requires the execution of about 106 benchmarks on the CPU.

Each of these measures takes time: the multiset of instructions must be transformed into an
assembly code, including the register mapping phrase; this assembly must be assembled and
linked into an ELF file; and finally, the benchmark must be actually executed, with multiple
warm-up rounds and multiple measures. On average, on the SKL-SP CPU, each benchmark
requires half to two-thirds of a second on a single core. The whole benchmarking phase, on the
SKL-SP processor, roughly took eight hours.

As Palmed relies on the Gurobi optimizer, which is itself non-deterministic, Palmed cannot
be made truly reproducible. However, the slight fluctuations in measured cycles between two
executions of a benchmark are also a major source of non-determinism in the execution of
Palmed.

For both these reasons, we implemented into Palmed a database-backed storage of measure-
ments. Whenever Palmed needs to measure a kernel, it will first try to find a corresponding
measure in the database; if the measure does not exist yet, it will be run, then stored in
database.

For each measure, we further store for context: the time and date at which the measure was
made; the machine on which the measure was made; how many times the measure was repeated;
how many warm-up rounds were performed; how many instructions were in the unrolled loop;
how many instructions were executed per repetition in total; the parameters for Pipedream’s
assembly generation procedure; how the final result was aggregated from the repeated measures;
the variance of the set of measures; how many CPU cores were active when the measure was
made; which CPU core was used for this measure; whether the kernel’s scheduler was set to
FIFO mode.

We believe that, as a whole, the use of a database increases the usability of Palmed: it is
faster if some measures were already made in the past and recovers better upon error.

This also gives us a better confidence towards our results: we can easily archive and backup
our experimental data, and we can easily trace the origin of a measure if needed. We can also
reuse the exact same measures between two runs of Palmed, to ensure that the results are as
consistent as possible.

42

General engineering contributions. Apart from purely scientific contributions, we worked
on improving Palmed as a whole, from the engineering point of view: code quality; reliable
parallel measurements; recovery upon error; logging; … These improvements amount to about a
hundred merge-requests between Nicolas Derumigny and myself.

43

Chapter 3

Beyond ports: manually modelling
the A72 frontend

The usual reverse-engineering methods for CPU models usually make abundant use of
hardware counters — and legitimately so, as they are the natural and accurate way to obtain
insight on the internals of a CPU. Such methods include, among others, the optimisation
guides from Agner Fog [Fog20], as well as uops.info [AR19] and uiCA’s [AR22] approach to
respectively model the CPU’s back- and front-end. In chapter 2, we introduced Palmed, whose
main goal is to automatically produce port-mappings of CPUs without assuming the presence
of specific hardware counters.

The ARM architectures occupy a growing space in the global computing ecosystem. They
are already pervasive among the embedded and mobile devices, with most mobile phones
featuring an ARM CPU [Haa23]. Processors based on ARM are emerging in datacenters and
supercomputers: the Fugaku supercomputer — considered the fastest supercomputer in the
world by the TOP500 ranking [Fuj23] — runs on ARM-based CPUs [Mat21], the MareNostrum
4 supercomputer has an ARM-based cluster [Bar20].

Yet, the ARM ecosystem is still lacking in performance debugging tooling. While llvm-mca
supports ARM, it is one of the only few: IACA, made by Intel, is not supported — and will never
be, as it is end-of-life —; uiCA is focused on Intel architectures, and cannot be easily ported as it
heavily relies on reverse engineering specific to Intel, and enabled by specific hardware counters;
Intel VTune, a commonly used profiling performance analysis tool, supports only x86-64.

In this context, modelling an ARM CPU — the Cortex A72 — with Palmed seemed to be
an important goal, especially meaningful as this particular CPU only has very few hardware
counters. However, it yielded only mixed results, as we will see in section 3.4.

In this chapter, we show that a major cause of imprecision in these results is the absence in
Palmed of a frontend model. We manually model the Cortex A72 frontend to compare a raw
Palmed-generated model, to one naively augmented with a frontend model.

While this chapter only documents a manual approach, we view it as a preliminary work
towards an automation of the synthesis of a model that stems from benchmarks data, in the
same way that Palmed synthesises a backend model. In this direction, we propose in section 3.5
a generic, parametric frontend that, we expect, could be used with good results on many
architectures. We also offer methodologies that we expect to be able to automatically fill some
of the parameters of this model for an arbitrary architecture.

44

3.1 Necessity to go beyond ports
The resource models produced by Palmed are mainly concerned with the backend of the

CPUs modeled. However, the importance of the frontend in the accuracy of a model’s prediction
cannot be ignored. Its effect can be clearly seen in the evaluation heatmaps of various code
analyzers in Figure 2.4. Each heatmap has a clear-cut limit on the horizontal axis: independently
of the benchmark’s content, it is impossible to reach more than a given number of instructions
per cycle for a given processor — 4 instructions for the SKL-SP, 5 for the ZEN1. This limit is
imposed by the frontend.

Some analyzers, such as Palmed and IACA, model this limit: the heatmap shows that the
predicted IPC will not surpass this limit. The other three analyzers studied, however, do not
model this limit; for instance, uops.info has a high density of benchmarks predicted at 8
instructions per cycle on SPEC2017 on the SKL-SP CPU, while the native measurement yielded
only 4 instructions per cycle. The same effect is visible on PMEvo and llvm-mca heatmaps.

Example (High back-end throughput on SKL-SP)

On the SKL-SP microarchitecture, assuming an infinitely large frontend, a number of
instructions per cycle higher than 4 is easy to reach.

According to uops.info data, a 64-bits integer addq is processed with a single µOP,
dispatched on port 0, 1, 5 or 6. In the meantime, a simple form 64 bits register store to
a direct register-held address — eg. a movq %rax, (%rbx) — is also processed with a single
µOP, dispatched on port 2 or 3.

Thus, backend-wise, the kernel 4× addq + 2× mov has a throughput of 6 instructions
per cycle. However, in reality, this kernel would be frontend-bound, with a theoretical
maximum throughput of 4 instructions per cycle — in fact, a Pipedream measure only
yields 3 instructions per cycle.

To account for this, Palmed tries to detect an additional resource, apart from the backend
ports and combined ports, on which every µOP incurs a load. This allows Palmed to avoid
large errors on frontend-bound kernels.

The approach is, however, far from perfect. The clearest reason for this is is that the frontend,
both on x86-64 and ARM architectures, works in-order, while Palmed inherently models kernels
as multisets of instructions, thus completely ignoring ordering. This resource model is purely
linear: an instruction incurs a load on the frontend resource in a fully commutative way,
independently of the previous instructions executed this cycle and of many other effects.

The article introducing uiCA [AR22] explores this question in detail for x86-64 Intel archi-
tectures. The authors, having previously developed uops.info, discuss the importance of a
correct modelling of the frontend to accurately predict throughput. Their approach, based on
the exploration and reverse-engineering of the crucial parts of the frontend, showcases many
important and non-trivial aspects of frontends usually neglected, such as the switching between
the decoders and µOP-cache as source of instructions — which cannot be linearly modelled.

3.2 The Cortex A72 CPU
The Cortex A72 [ARM] is a CPU based on the ARMv8-A ISA — the first ARM ISA to

implement Aarch64, the 64-bits ARM extension. It is an out-of-order CPU, with Neon SIMD
support. The CPU is designed as a general-purpose, high-performance core for low-power
applications.

The Raspberry Pi 4 uses a 4-cores A72 CPU, implemented by Broadcom as BCM2711; it is
thus easy to have access to an A72 to run experiments.

45

Fetch
Decode,
Rename,
Dispatch Is

su
e

Branch

Integer 0

Integer 1

Integer multi-cycle

FP/SIMD 0

FP/SIMD 1

Load

Store

In-order Out-of-order

Front-end Back-end

3
μOPs

Figure 3.1 – Simplified overview of the Cortex A72 pipeline

Backend. As can be seen in Figure 3.1 (adapted from the software optimization guide for the
Cortex A72, published by ARM [15]), the Cortex A72 has eight execution ports:

— a branch port (branch instructions, equivalent to x86 jumps);
— two identical integer ports (integer arithmetic operation), noted Int01;
— an integer multi-cycle port (complex integer operations, eg. divisions), noted IntM;
— two nearly-identical floating point and SIMD ports, noted FP0 and FP1, or FP01 to

denote both. They are mostly identical, with slight specializations: eg. only port FP0
can do SIMD multiplication, while only port FP1 can do floating point comparisons);

— a load port, noted Ld;
— a store port, noted St.

Frontend. The Cortex A72 frontend can only decode three instructions and dispatch three
µOPs per cycle [15]. Intel’s SKL-SP, which we considered before, has a frontend that bottlenecks
at four µOPs per cycle [Fog16]. This difference of one µOP per cycle is actually meaningful, as
this means that only three of the eight backend ports can be used each cycle.

Example (2nd order polynomial evaluation)

Consider a kernel evaluating the 2nd order polynomial expression for different values of x:

P [i] = aX[i]2 + bX[i] + c

= (aX[i] + b)×X[i] + c

which directly translates to four operations: load X[i], two floating point multiply-add,
store the result P [i]. The backend, having a load port, two SIMD ports and a store port,
can execute one iteration of such a kernel every cycle; in steady-state, out-of-order execution
can lift the latency-induced pressure. However, as the frontend bottlenecks at three µOPs
per cycle, this kernel does not fit in a single cycle.

Lack of hardware counters. The Cortex A72 only features a very limited set of specialized
hardware counters. While the CPU is able to report the number of elapsed cycles, retired
instructions, branch misses and various metrics on cache misses, it does not report any event

46

regarding macro- or micro-operations, dispatching or issuing to specific ports. This makes it, as
pointed before, a particularly relevant target for Palmed.

3.3 Manually modelling the A72 frontend
Our objective is now to manually construct a frontend model of the Cortex A72. We

strive, however, to remain as close to an algorithmic methodology as possible: while our
model’s structure is manually crafted, its data should come from experiments that can be later
automated.

3.3.1 Finding micro-operation count for each instruction

As we saw in section 3.2, the Cortex A72’s frontend can only dispatch three µOPs per cycle.
The first important data to collect, thus, is the number of µOPs each instruction is decoded
into.

To that end, the optimisation manual [15] helps, but is not thorough enough: for each
instruction, it lists the ports on which load is incurred, which sets a lower bound to the number
of µOPs the instruction is decomposed into. This approach, however, is not really satisfying.
First, because it cannot be reproduced for another architecture whose optimisation manual is
not as detailed, cannot be automated, and fully trusts the manufacturer. Second, because if an
instruction loads eg. the integer ports, it may have a single or multiple µOPs executed on the
integer ports; the manual is only helpful to some extent to determine this.

We instead use an approach akin to Palmed’s saturating kernels, itself inspired by Agner
Fog’s method to identify ports in the absence of hardware counters [Fog20]. To this end, we
assume the availability of a port mapping for the backend — in the case of the Cortex A72, we
use Palmed’s output, sometimes manually confronted with the software optimisation guide [15];
uops.info could also be used on the architectures it models.

The Palmed resource mapping we use as a basis is composed of 1 975 instructions. To make
this more manageable in a semi-automated method, we reuse the instruction classes provided
by Palmed, introduced in section 2.2, as instructions in the same class are mapped to the same
resources, and thus are decomposed into the same µOPs; this results in only 98 classes of
instructions.

Basic instructions. We use Palmed’s mapping to hand-pick basic instructions: for each port,
we select one instruction which decodes into a single µOP executed by this port. We use the
following instructions, in Pipedream’s notation:

— integer 0/1: ADC_RD_X_RN_X_RM_X, eg. adc x0, x1, x2;
— integer multi-cycle: MUL_RD_W_RN_W_RM_W, eg. mul w0, w1, w2;
— load: LDR_RT_X_ADDR_REGOFF, eg. ldr x0, [x1, x2];
— store: STR_RT_X_ADDR_REGOFF, eg. str x0, [x1, x2];
— FP/SIMD 0: FRINTA_FD_D_FN_D, eg. frinta d0, d1 (floating-point rounding to integral);
— FP/SIMD 1: FCMP_FN_D_FM_D, eg. fcmp d0, d1 (floating-point comparison);
— FP/SIMD 0/1: FMIN_FD_D_FN_D_FM_D, eg. fmin d0, d1, d1 (floating-point minimum);
— (Branch: no instruction, as they are unsupported by Pipedream).
As the integer ports are not specialized, a single basic instruction is sufficient for both of

them. The FP/SIMD ports are slightly specialized (see section 3.2), we thus use three basic
instructions: one that stresses each of them independently, and one that stresses both without
distinction.

For each of these ports, we note Bp the basic instruction for port p; eg., BInt01 is
ADC_RD_X_RN_X_RM_X.

47

Counting the micro-ops of an instruction. There are three main sources of bottleneck
for a kernel K: backend, frontend and dependencies. When measuring the execution time with
Pipedream, we eliminate (as far as possible) the dependencies, leaving us with only backend
and frontend. We note KF the execution time of K if it was only limited by its frontend, and
KB the execution time of K if it was only limited by its backend. If we consider a kernel K
that is simple enough to exhibit a purely linear frontend behaviour — that is, the frontend’s
throughput is a linear function of the number of µOPs in the kernel —, we then know that
either K = KF or K = KB.

For a given instruction i and for a certain k ∈ N, we then construct a kernel Kk such that:
(i) Kk is composed of the instruction i, followed by k basic instructions;
(ii) the kernel Kk is simple enough to exhibit this purely linear frontend behaviour;
(iii) Kk

B ≤ Kk
F.

We denote by #µK the number of µOPs in kernel K. Under the condition (ii), we have for
any k ∈ N

Kk
F = #µ (Kk)

3 for the A72

= #µi + k

3 by condition (i)

≥ k + 1
3

We pick k0 := 3 dıe − 1. Thus, we have dıe ≤ Kk0
F ≤ Kk0 . Condition (iii) can then be

relaxed as Kk0
B ≤ dıe , which we know to be true if the load from Kk0 on each port does not

exceed dıe (as execution takes at least this number of cycles).
We build Kk0 by adding basic instructions to i, using the port mapping to pick basic

instructions that do not load a port over dıe . This is always possible, as we can load independently
seven ports (leaving out the branch port), while each instruction can load at most three ports
by cycle it takes to execute — each µOP is executed by a single port, and only three µOPs
can be dispatched per cycle —, leaving four ports under-loaded. We build Kk0+1 the same way,
still not loading a port over dıe ; in particular, we still have Kk0+1

B ≤ dıe ≤ Kk0+1
F. To ensure

that condition (ii) is valid, as we will see later in section 3.3.2, we spread as much as possible
instructions loading the same port: for instance, i + BInt01 + BFP01 + BInt01 is preferred over
i + 2× BInt01 + BFP01.

Unless condition (ii) is not met or our ports model is incorrect for this instruction, we should
measure dıe ≤ Kk0 and Kk0 + 1/3 = Kk0+1. For instructions i where it is not the case, increasing
k0 by 3 or using other basic instructions eventually yielded satisfying measures. Finally, we
obtain

#µi = 3Kk0 − k0

Applying this procedure manually on each instruction class provides us with a model
mapping each supported instruction of the ISA to its µOP count.

Example (µOP count measure: ADC_RD_X_RN_X_RM_X)

We measure the µOP-count of i = ADC_RD_X_RN_X_RM_X, our basic instruction for the integer
port.

We measure ı = 0.51 ' 1/2 cycle; hence, we consider K2 and K3. Our mapping indicates
that this instruction loads only the Int01 port with a load of 1/2.

48

Frontend

With linear frontend

→
Frontend

With no-cross frontend

Figure 3.2 – Illustration of the no-cross frontend model. Rows represent CPU cycles.

We select eg. K2 = i + 2× BFP01 and K3 = i + BFP01 + BLd + BFP01.
We measure
— K2 = 1.01 ' 1 cycle
— K3 = 1.35 ' 1 1/3 cycles

which is consistent. We conclude that, as expected, #µi = 3K2 − 2 = 3− 2 = 1.

Example (µOP count measure: ADDV_FD_H_VN_V_8H)

We measure the µOP-count of i = ADDV_FD_H_VN_V_8H, the SIMD “add across vector” operation
on a vector of eight sixteen-bits operands.

We measure ı = 1.01 ' 1 cycle; hence, we consider K2 and K3. Our mapping indicates
that this instruction loads the FP1 port with a load of 1, and the FP01 port with a load of
1 a.

We select eg. K2 = i + 2× BInt01 and K3 = i + BInt01 + BLd + BInt01.
We measure
— K2 = 1.35 ' 1 1/3 cycles
— K3 = 1.68 ' 1 2/3 cycles

which is consistent. We conclude that #µi = 3K2 − 2 = 4− 2 = 2.

a. The FP01 port has a throughput of 2, hence a load of 1 means two µOPs. As there is already a µOP
loading the FP1 port, which also loads the combined port FP01, this can be understood as one µOP on FP1
exclusively, plus one on either FP0 or FP1.

3.3.2 Bubbles in the pipeline

The frontend, however, does not always exhibit a purely linear behaviour. We consider for
instance the kernel K = ADDV_FD_H_VN_V_8H +3× BInt01; for the rest of this chapter, we refer to
ADDV_FD_H_VN_V_8H as simply ADDV when not stated otherwise.

Backend-wise, ADDV fully loads FP1 and FP01, while BInt01 half-loads Int01. The port most
loaded by K is thus Int01, with a load of 1 1/2. We then expect KB = 1 1/2.

Frontend-wise, ADDV decomposes into two µOPs, while BInt01 decomposes into a single µOPs;
thus, #µK = 5. We then expect KF = 1 2/3.

As the frontend dominates the backend, we expect K = KF = 1 2/3. However, in reality, we
measure K = 2.01 ' 2 cycles.

From then on, we strive to find a model that could reliably predict, given a kernel, how
many cycles it requires to execute, frontend-wise, in a steady-state.

No-cross model

On the x86-64 architectures they analyzed, uiCA’s authors find that the CPU’s predecoder
might cause an instruction’s µOPs to be postponed to the next cycle if it is pre-decoded across

49

a cycle boundary [AR22, §4.1].
We hypothesize that the same kind of effect could postpone an instruction’s µOPs until the

next cycle if its µOPs would cross a cycle boundary otherwise. This behaviour is illustrated in
Figure 3.2, with a kernel composed of three instructions: the first two each decode to a single
µOP, while the third one decodes to two µOPs. In this figure, each row represents a CPU cycle,
while each square represents a µOP-slot in the frontend; there are thus at most three squares in
each row. In the no-cross case (right), the constraint forced the third instruction to start its
decoding at the beginning of the second cycle, leaving a “bubble” in the frontend on the first
cycle.

Frontend

ADDV ADD

ADD ADD

ADDV ADD

ADD ADD

Figure 3.3 – No-
cross frontend for
ADDV + 3× BInt01

This model explains the K = ADDV + 3 × BInt01 example introduced
above, as depicted in Figure 3.3, where K is represented twice, to ensure
that the steady-state was reached. Here, the frontend indeed requires two
full cycles to issue K, which is consistent with our measure.

The notion of steady-state is, in the general case, not as straightforward:
it is well possible that, after executing the kernel once, the second iteration
of the kernel does not begin at the cycle boundary. The state of the model,
however, is entirely defined by the number s ∈ {0, 1, 2} of µOPs already
decoded this cycle. Thus, if at the end of a full execution of a kernel, s
is equal to a state previously encountered at the end of a kernel, k kernel
iterations before, steady-state was reached for this portion: we know that
further executing the kernel k times will bring us again to the same state.
The steady-state execution time, frontend-wise, of a kernel is then the
number of elapsed cycles between the beginning and end of the steady-state
pattern (as the start and end state are the same), divided by the number
of kernel repetitions inside the pattern.

The no-cross model is formalized by the next_state function defined in Listing 1 in Python.

There are two main phases when repeatedly applying the next_state function. Consider
the following example of a graph representation of the next_state function, ignoring the
cycles_started return value:

0 1 2

Frontend

ADDV ADD

ADD ADDV

ADD ADD

Figure 3.4 – No-
cross frontend for
ADDV + 2× BInt01

When repeatedly applied starting from 0, the next_state function
will yield the sequence 0, 1, 2, 1, 2, 1, 2, The first iteration brings us to
state 1, which belongs to the steady-state; starting from there, the next
iterations will loop through the steady-state.

In the general case, the model iterates the next_state function starting
from state 0 until a previously-encountered state is reached — this requires
at most three iterations. At this point, steady-state is reached. The
function is further iterated until the same state is encountered again

— also requiring at most three iterations —. The number of elapsed
cycles during this second phase, divided by the number of iterations of the
function, is returned as the predicted steady-state execution time of the
kernel, frontend-wise.

This model, however, is not satisfactory in many cases. For instance,
the kernel K′ = ADDV + 2 × BInt01 is predicted to run in 1.5 cycles, as
depicted in Figure 3.4; however, a Pipedream measure yields K′ = 1.35 ' 1 1/3 cycles.

50

1 State = type([0, 1, 2]) # incorrect Python for clarity
2

3

4 def next_state(cur_state: State, kernel: list[int]) -> tuple[State, int]:
5 """Returns a tuple (next_state , cycles_elapsed). An instruction in the
6 kernel is represented by its number of micro-ops."""
7

8 cycles_started = 0
9

10 for insn_uops in kernel:
11 if cur_state > 0 and cur_state + insn_uops > 3:
12 # Start a new cycle instead, creating bubbles
13 cur_state = insn_uops % 3
14 cycles_started += 1 + (insn_uops // 3)
15 else:
16 # General "linear" case
17 n_state = cur_state + insn_uops
18 cur_state = n_state % 3
19 cycles_started += n_state // 3
20

21 # Normalize the state: if the first instruction of the next kernel
22 # would not fit in this cycle, initialize the next cycle.
23 if cur_state > 0 and cur_state + kernel[0] > 3:
24 cur_state = 0
25 cycles_started += 1
26

27 return (cur_state , cycles_started)

Listing 1 – Implementation of the next_state function for the no-cross frontend model

Dispatch-queues model

Frontend

ADDV

ADDV

ADD

ADD ADD

ADD

ADD

ADD

ADD ADD

ADD ADD

ADDV

ADDVADD

Figure 3.5 – Disp.
queues frontend for
ADDV + 3× BInt01

The software optimisation guide, however, details additional dispatch
constraints in Section 4.1 [15]. While it confirms the dispatch constraint of
at most three µOPs per cycle, it also introduces more specific constraints.
There are six dispatch pipelines, that each bottleneck at less than three
µOPs dispatched each cycle:

Pipeline Related ports µOPs/cyc.

Branch Branch 1
Int Int01 2
IntM IntM 2
FP0 FP0 1
FP1 FP1 1
LdSt Ld, St 2

These dispatch constraints could also explain the K = ADDV+3×BInt01
measured run time, as detailed in Figure 3.5: the frontend enters steady
state on the fourth cycle and, on the fifth (and every second cycle from then
on), can only execute two µOPs, as the third one would be a third µOP
loading the Int dispatch queue, which can only dispatch two µOPs per
cycle. As this part of the CPU is in-order, the frontend is stalled until the
next cycle, leaving a dispatch bubble. In steady-state, the dispatch-queues
model thus predicts KF = 2 cycles, which is consistent with our measure.

This model also explains the K′ = ADDV+2×BInt01 measured time, as detailed in Figure 3.6:
the dispatch-queues constraints do not force any bubble in the dispatch pipeline. The model

51

thus predicts K′F = 1 1/3, which is consistent with our measure.

Frontend

ADDV ADD

ADD ADDV

ADD ADD ADDV

ADD ADD

Figure 3.6 – Disp.
queues frontend for
ADDV + 2× BInt01

Finding a dispatch model. This model, however, cannot be deduced
straightforwardly from our previous µOPs model: each µOP needs to
further be mapped to a dispatch queue.

The model yielded by Palmed is not usable as-is to deduce the dis-
patch queues used by each instruction: the detected resources are not a
perfect match for the CPU, and some resources tend to be duplicated
due to measurement artifacts. For instance, the Int01 resource might be
duplicated into r0 and r1, with some integer operations loading r0, some
loading r1, and a majority loading both — while it makes for a reasonably
good throughput model, it would require extra cleaning work to be used
as a dispatch model. It is, however, a good basis for manual mapping:
for instance, the Ld and St ports are one-to-one matches, and allow to
automatically map all load and store operations.

We generate a base dispatch model from the Palmed model, and
manually cross-check each class of instructions using the optimisation
manual, with Pipedream measures in some cases to further clarify.

This method trivially works for most instructions, which are built out of a single µOP and
for which we find a single relevant dispatch queue. However, instructions where this is not the
case require specific processing. For an instruction i, with u = #µi µOPs and found to belong
to d distinct dispatch queues, we break down the following cases.

— If d > u, our µOPs model is wrong for this instruction, as each µOP belongs to a single
dispatch queue. This did not happen in our model.

— If d = 1, u > 1, each µOP belongs to the same dispatch queue.
— If d = u > 1, each µOP belongs to its own dispatch queue. For now, our model orders

those µOPs arbitrarily. However, the order of those µOPs might be important due to
dispatch constraints, and would require specific investigation with kernels meant to stress
the dispatch queues, assuming a certain µOP order.

— If 1 < d < u, we do not have enough data to determine how many µOPs belong to each
queue; this would require further measurements. We do not support those instructions,
as they represent only 35 instructions out of the 1749 instructions supported by our
Palmed-generated backend model.

Due to the separation of FP0 and FP1 in two different dispatch queues, this model also
borrows the abstract resources’ formalism in a simple case: it actually models seven queues,
including FP0, FP1 and FP01, the two former with a maximal load of 1 and the latter with a
maximal load of 2. Any µOP loading queues FP0 or FP1 also load the FP01 queue likewise.

Implementing the dispatch model. A key observation to implement this model is that, as
with the no-cross model, the state of the model at the end of a kernel occurrence is still only
determined by the number of µOPs already dispatched in the current cycle. Indeed, since the
dispatcher is in-order, at the end of a kernel occurrence, the last µOPs dispatched will always
be the same in steady-state, as the last instructions are the few last of the kernel.

On account of this observation, the general structure of the no-cross implementation remains
correct: at most three kernel iterations to reach steady-state, and at most three more to find a
fixed point. The next_state function is adapted to account for the dispatch queues limit.

52

llvm-mca
Palmed with frontend…

none linear no-cross disp. queues

SPEC
Cov. (%) 100.0 N/A 97.21 97.21 97.16
Err. (%) 9.0 20.1 6.2 6.3 4.6
τK (1) 0.83 0.88 0.91 0.91 0.93

Polybench
Cov. (%) 100.00 N/A 99.33 99.33 99.33
Err. (%) 13.9 12.6 8.1 8.1 8.0
τK (1) 0.47 0.82 0.88 0.88 0.90

Table 3.1 – Comparative accuracy of IPC predictions with different frontend models on the
Cortex A72

3.4 Evaluation on Palmed
To evaluate the gain brought by each frontend model, we plug them successively on top

of the Palmed backend model. The number of cycles for a kernel K is then predicted as the
maximum between the backend-predicted time and the frontend-predicted time.

We evaluate four models: Palmed’s backend alone, Palmed with a purely linear frontend,
based on our modeled number of µOPs for each instruction, Palmed with the no-cross frontend,
and finally Palmed with the dispatch-queues frontend. The results of each model are reported in
Table 3.1, to which we add llvm-mca’s results as a basis for comparison with the state-of-the-art.

As expected, the error is greatly reduced with the addition of any reasonable frontend model
— especially on the SPEC benchmark suite. Using the dispatch-queues model, which models
more accurately the frontend, further reduces significantly the error rate on SPEC by 1.6 points,
without significantly increasing the τK coefficient. On Polybench, however, the gains brought
by the dispatch-queues model are very modest — only 0.1 point.

In all cases, Palmed with a frontend model performs significantly better than llvm-mca on
the Cortex A72.

3.5 A parametric model for future works of automatic frontend
model generation

While this chapter was solely centered on the Cortex A72, we believe that this study paves
the way for an automated frontend model synthesis akin to Palmed. This synthesis should be
fully-automated; stem solely from benchmarking data and a description of the ISA; and should
avoid the use of any specific hardware counter.

As a scaffold for such a future work, we propose the parametric model in Figure 3.7. Some
of its parameters should be possible to obtain with the methods used in this chapter, while for
some others, new methods must be devised.

Such a model would probably be unable to account for “unusual” frontend bottlenecks
— at least not at the level of detail that eg. uiCA authors gather for Intel frontends [AR22].
This level of detail, however, is possible exactly because the authors’ restricted their scope to
microarchitectures that share a lot of similarity, coming from the same manufacturer. Assessing
the extent of the loss of precision of an automatically-generated model, and its gain of precision
wrt. a model without frontend, remains to be done.

Our model introduces a limited number of parameters, depicted in red italics in Figure 3.7. It
is composed of two parts: a model of the frontend in itself, describing architectural parameters;
and insights about each instruction. Its parameters are:

— the number of µOPs that can be dispatched overall per cycle;

53

Decoders

DISPATCH
QUEUES

Number of
queues

1

N

2

…

μops dispatched
per cycle

μops/cycle

μops/cycle

μops/cycle

(a) Frontend model

Instruction
i

For each
instruction,

MICRO-OPS

…

}
}

}

#μops for
dispatch
queue 1

#μ
Q2

#μ
QN

} i

Total
number
of μops

μ

(b) Instruction model

Figure 3.7 – A generic parametric model of a processor’s frontend. In red italics, the parameters
which must be discovered for each architecture.

— the number of distinct dispatch queues of the processor (eg. memory operations, integer
operations, …);

— for each of those queues, the number of µOPs it can dispatch per cycle;
— for each instruction i,

— its total number of µOPs µi;
— the number of µOPs that get dispatched to each individual queue (summing up to

µi).

The first step in modeling a processor’s frontend should certainly be to characterize the
number of µOPs that can be dispatched in a cycle. We assume that a model of the backend is
known — by taking for instance a model generated by Palmed, using tables from uops.info or
any other mean. To the best of our knowledge, we can safely further assume that instructions
that load a single backend port only once are also composed of a single µOP. Generating a
few combinations of a diversity of those and measuring their effective throughput — making
sure using the backend model that the latter is not the bottleneck — and keeping the maximal
throughput reached should provide a good value.

54

In this chapter, we obtained the number of dispatch queues and their respective throughput
by reading the official documentation. Automating this part remains to be addressed to obtain
an automatic model. It should be possible to make these parameters apparent by identifying
“simple” instructions that conflict further than the main dispatch limitation and combining
them.

The core of the model presented in this chapter is the discovery, for each instruction, of
its µOP count. Still assuming the knowledge of a backend model, the method described in
subsection 3.3.1 should be generic enough to be used on any processor. The basic instructions
may be easily selected using the backend model — we assume their existence in most microar-
chitectures, as pragmatic concerns guide the ports design. Counting the µOPs of an instruction
thus follows, using only elapsed cycles counters.

This method assumes that KF bottlenecks on a global dispatch queue for K, and not specific
dispatch queues. This must be ensured by selecting well-chosen kernels — for instance, on the
A72, care must be taken to interleave instructions corresponding to diverse enough dispatch
pipelines.

Finally, the break-down of each instruction’s µOPs into their respective dispatch queues
should follow from the backend model, as each dispatch queue is tied to a subset of backend
ports.

The question of complex decoders. While the ARM ISA is composed of instructions of
fixed length, making decoding easier, such is not always the case. The x86 ISA, for one, uses
instructions that vary in length from one to fifteen bytes [23c]. Larger instructions may prove
to be a huge frontend slowdown, especially when such instructions cross an instruction cache
line boundary [AR22].

Processors implementing ISAs subject to decoding bottleneck typically also feature a decoded
µOP cache, or decoded stream buffer (DSB). The typical hit rate of this cache is about 80% [23c,
Section B.5.7.2; Ren+21]. However, code analyzers are concerned with loops and, more generally,
hot code portions. Under such conditions, we expect this cache, once hot in steady-state, to be
very close to a 100% hit rate. In this case, only the dispatch throughput will be limiting, and
modeling the decoding bottlenecks becomes irrelevant.

Points of vigilance and limitations. This parametric model aims to be a compromise
between simplicity of automation and good accuracy. Experimentation may prove that it lacks
some important features to be accurate. Depending on the architecture targeted, the following
points should be investigated if the model does not reach the expected accuracy.

— We introduced just above the DSB (µOP cache). This model considers that the DSB
will never be the cause of a bottleneck and that, instead, the number of dispatched µOPs
per cycle will always bottleneck before. This might not be true, as DSBs are complex in
themselves already [AR22].

— Intel CPUs use a Loop Stream Detector (LSD) to keep in the decode queue a whole
loop’s body of µOPs if the frontend detects that a small enough loop is repeated [AR22;
Ren+21]. In this case, µOPs are repeatedly streamed from the decode queue, without
even the necessity to hit a cache. We are unaware of similar features in other commercial
processors. In embedded programming, however, hardware loops — which are set up
explicitly by the programmer — achieve, among others, the same goal [SRO04; Kav07;
TJ01].

— The branch predictor of a CPU is responsible for guessing, before the actual logic is
computed, whether a conditional jump will be taken. A misprediction forces the frontend

55

to re-populate its queues with instructions from the branch actually taken and typically
stalls the pipeline for several cycles [ESE06]. Our model, however, does not include a
branch predictor for much the same reason that it does not include complex decoder: in
steady-state, in a hot code portion, we expect the branch predictor to always predict
correctly.

— In reality, there is an intermediary step between instructions and µOPs: macro-ops.
Although it serves a designing and semantic purpose, we omit this step in the current
model as — we believe — it is of little importance to predict performance.

— On x86 architectures at least, common pairs of micro- or macro-operations may be
“fused” into a single one, up to various parts of the pipeline, to save space in some
queues or artificially boost dispatch limitations. This mechanism is implemented in Intel
architectures, and to some extent in AMD architectures since Zen [23b, §3.4.2; AR22;
Vis+21]. This may make some kernels seem to “bypass” dispatch limits.

56

Chapter 4

A more systematic approach to
throughput prediction performance
analysis: CesASMe

In the previous chapters, we focused on two of the main bottleneck factors for computation
kernels: chapter 2 investigated the backend aspect of throughput prediction, while chapter 3
dived into the frontend aspects.

Throughout those two chapters, we entirely left out another crucial factor: dependencies,
and the latency they induce between instructions. We managed to do so, because our baseline
of native execution was Pipedream measures, designed to suppress any dependency.

However, state-of-the-art tools strive to provide an estimation of the execution time K of
a given kernel K that is as precise as possible, and as such, cannot neglect this third major
bottleneck. An exact throughput prediction would require a cycle-accurate simulator of the
processor, based on microarchitectural data that is most often not publicly available, and
would be prohibitively slow in any case. These tools thus each solve in their own way the
challenge of modeling complex CPUs while remaining simple enough to yield a prediction in a
reasonable time, ending up with different models. For instance, on the following x86-64 basic
block computing a general matrix multiplication,

1 movsd (%rcx, %rax), %xmm0
2 mulsd %xmm1, %xmm0
3 addsd (%rdx, %rax), %xmm0
4 movsd %xmm0, (%rdx, %rax)
5 addq $8, %rax
6 cmpq $0x2260, %rax
7 jne 0x16e0

llvm-mca predicts 1.5 cycles, IACA and Ithemal predict 2 cycles, while uiCA predicts 3 cycles.
One may wonder which tool is correct.

In this chapter, we take a step back from our previous contributions, and assess more
generally the landscape of code analyzers. What are the key bottlenecks to account for if one
aims to predict the execution time of a kernel correctly? Are some of these badly accounted for
by state-of-the-art code analyzers? This chapter, by conducting a broad experimental analysis
of these tools, strives to answer these questions.

In section 4.1, we investigate how a kernel’s execution time may be measured if we want to
correctly account for its dependencies. We advocate for the measurement of the total execution
time of a computation kernel in its original context, coupled with a precise measure of its
number of iterations to normalize the measure.

We then present a fully-tooled solution to evaluate and compare the diversity of static

57

Benchmark suite [§4.3.1]

Loop nest optimizers [§4.3.2]

Constraining utility [§4.3.3]

Compilations [§4.3.4] Basic block
extraction [§4.4.1] Ithemal

IACA

uiCA

llvm-mca

BHive (measure)perf (measure)

Gus

Prediction lifting
[§4.4.3]

Throughput predictions
& measures [§4.4.2]Variations

Evaluation metrics
for code analyzers

Section 4.3 : generating microbenchmarks
Section 4.4 : benchmarking harness
Section 4.6 : results analysis

Figure 4.1 – Our analysis and measurement environment.

throughput predictors. Our tool, CesASMe, solves two main issues in this direction. In Sec-
tion 4.3, we describe how CesASMe generates a wide variety of computation kernels stressing
different parameters of the architecture, and thus of the predictors’ models, while staying close
to representative workloads. To achieve this, we use Polybench [PY16], a C-level benchmark
suite that we already introduced for Palmed in section 2.4. Polybench is composed of bench-
marks representative of scientific computation workloads, that we combine with a variety of
optimisations, including polyhedral loop transformations.

In Section 4.4, we describe how CesASMe is able to evaluate throughput predictors on this
set of benchmarks by lifting their predictions to a total number of cycles that can be compared
to a hardware counters-based measure. A high-level view of CesASMe is shown in Figure 4.1.

In Section 4.5, we detail our experimental setup and assess our methodology. In Section 4.6,
we compare the predictors’ results and analyze the results of CesASMe. In addition to statistical
studies, we use CesASMe’s results to investigate analyzers’ flaws. We show that code analyzers do
not always correctly model data dependencies through memory accesses, substantially impacting
their precision.

4.1 Re-defining the execution time of a kernel
We saw above that state-of-the-art code analyzers disagreed by up to 100 % on the execution

time of a relatively simple kernel. The obvious solution to assess their predictions is to compare
them to an actual measure. However, accounting for dependencies at the scale of a basic block
makes this actual measure not as trivially defined as it would seem. Take for instance the
following kernel:

1 mov (%rax, %rcx, 1), %r10
2 mov %r10, (%rbx, %rcx, 1)
3 add $8, %rcx

At first, it looks like an array copy from location %rax to %rbx. Yet, if before the loop, %rbx is
initialized to %rax+8, there is a read-after-write dependency between the first instruction and the
second instruction at the previous iteration; which makes the throughput drop significantly. As
we shall see in Section 4.6.2, without proper context, a basic block’s throughput is not well-defined.

To recover the context of each basic block, we reason instead at the scale of a C source code.

58

This makes the measures unambiguous: one can use hardware counters to measure the elapsed
cycles during a loop nest. This requires a suite of benchmarks, in C, that both is representative
of the domain studied, and wide enough to have a good coverage of the domain. However, this
is not in itself sufficient to evaluate static tools: on the preceding matrix multiplication kernel,
counters report 80,059 elapsed cycles — for the total loop. This number compares hardly to
llvm-mca, IACA, Ithemal, and uiCA basic block-level predictions seen above.

A common practice to make these numbers comparable is to renormalize them to instructions
per cycles (IPC). Here, llvm-mca reports an IPC of 7/1.5 = 4.67, IACA and Ithemal report an
IPC of 7/2 = 3.5, and uiCA reports an IPC of 7/3 = 2.3. In this case, the measured IPC is 3.45,
which is closest to IACA and Ithemal. Yet, IPC is a metric for microarchitectural load, and tells
nothing about a kernel’s efficiency. Indeed, the static number of instructions is affected by many
compiler passes, such as scalar evolution, strength reduction, register allocation, instruction
selection… Thus, when comparing two compiled versions of the same code, IPC alone does not
necessarily point to the most efficient version. For instance, a kernel using SIMD instructions
will use fewer instructions than one using only scalars, and thus exhibit a lower or constant
IPC; yet, its performance will unquestionably increase.

The total cycles elapsed to solve a given problem, on the other hand, is a sound metric of
the efficiency of an implementation. We thus instead lift the predictions at basic-block level to a
total number of cycles. In simple cases, this simply means multiplying the block-level prediction
by the number of loop iterations; however, this bound might not generally be known. More
importantly, the compiler may apply any number of transformations: unrolling, for instance,
changes this number. Control flow may also be complicated by code versioning.

Instead of guessing this final number of iterations at the assembly level, a sounder alternative
is to measure it on the final binary. In section 4.4, we present our solution to do so, using gdb
to instrument an execution of the binary.

4.2 Related works
Another comparative study: AnICA. The AnICA framework [RH22] also attempts to
comparatively evaluate various throughput predictors by finding examples on which they are
inaccurate. AnICA starts with randomly generated assembly snippets fed to various code
analyzers. Once it finds a snippet on which (some) code analyzers yield unsatisfying results,
it refines it through a process derived from abstract interpretation to reach a more general
category of input, eg. “a load to a SIMD register followed by a SIMD arithmetic operation”.

A dynamic code analyzer: Gus. So far, this manuscript was mostly concerned with static
code analyzers. Throughput prediction tools, however, are not all static. Gus is a dynamic tool
first introduced in Fabian Gruber’s PhD thesis [Gru19]. It leverages QEMU’s instrumentation
capabilities to dynamically predict the throughput of user-defined regions of interest in whole
program. In these regions, it instruments every instruction, memory access, … in order to retrieve
the exact events occurring through the program’s execution. Gus then leverages throughput,
latency and microarchitectural models to analyze resource usage and produce an accurate
theoretical elapsed cycles prediction.

Its main strength, however, resides in its sensitivity analysis capabilities: by applying an
arbitrary factor to some parts of the model (eg. latencies, arithmetics port, …), it is possible to
investigate the impact of a specific resource on the final execution time of a region of interest. It
can also accurately determine if a resource is actually a bottleneck for a region, ie. if increasing
this resource’s capabilities would reduce the execution time. The output of Gus on a region
of interest provides a very detailed insight on each instruction’s resource consumption and its
contribution to the final execution time. As a dynamic analysis tool, it is also able to extract
the dependencies an instruction exhibits on a real run.

59

The main downside of Gus, however, is its slowness. As most dynamic tools, it suffers from
a heavy slowdown compared to a native execution of the binary, oftentimes about 100× slower.
While it remains a precious tool to the user willing to deeply optimize an execution kernel, it
makes Gus highly impractical to run on a large collection of execution kernels.

An isolated basic-block profiler: BHive. In section 4.1 above, we advocated for measuring
a basic block’s execution time in-context. The BHive profiler [Che+19], initially written by
Ithemal’s authors [MAC18] to provide their model with sufficient — and sufficiently accurate —
training data, takes an orthogonal approach to basic block throughput measurement. By
mapping memory at any address accessed by a basic block, it can effectively run and measure
arbitrary code without context, often — but not always, as we discuss later — yielding good
results.

4.3 Generating microbenchmarks
Our framework aims to generate microbenchmarks relevant to a specific domain. A mi-

crobenchmark is a code that is as simplified as possible to expose the behaviour under consider-
ation. The specified computations should be representative of the considered domain, and at
the same time they should stress the different aspects of the target architecture — which is
modeled by code analyzers.

In practice, a microbenchmark’s computational kernel is a simple for loop, whose body
contains no loops and whose bounds are statically known. A measure is a number of repetitions
n of this computational kernel, n being a user-specified parameter. The measure may be
repeated an arbitrary number of times to improve stability.

Furthermore, such a microbenchmark should be a function whose computation happens
without leaving the L1 cache. This requirement helps measurements and analyses to be
undisturbed by memory accesses, but it is also a matter of comparability. Indeed, most of the
static analyzers make the assumption that the code under consideration is L1-resident; if it is
not, their results are meaningless, and can not be compared with an actual measurement.

The generation of such microbenchmarks is achieved through four distinct components,
whose parameter variations are specified in configuration files : a benchmark suite, C-to-C loop
nest optimizers, a constraining utility and a C-to-binary compiler.

4.3.1 Benchmark suite

Our first component is an initial set of benchmarks which materializes the human expertise
we intend to exploit for the generation of relevant codes. The considered suite must embed
computation kernels delimited by ad-hoc #pragmas, whose arrays are accessed directly (no
indirections) and whose loops are affine. These constraints are necessary to ensure that the
microkernelification phase, presented below, generates segfault-free code.

In this case, we use Polybench [PY16], a suite of 30 benchmarks for polyhedral compilation
— of which we use only 26. The nussinov, ludcmp and deriche benchmarks are removed
because they are incompatible with PoCC (introduced below). The lu benchmark is left out as
its execution alone takes longer than all others together, making its dynamic analysis (eg. with
Gus) impractical. In addition to the importance of linear algebra within Polybench, one of its
important features is that it does not include computational kernels with conditional control
flow (eg. if-then-else) — however, it does includes conditional data flow, using the ternary
conditional operator of C.

60

4.3.2 C-to-C loop nest optimizers

Loop nest optimizers transform an initial benchmark in different ways (generate different
versions of the same benchmark), varying the stress on resources of the target architecture, and
by extension the models on which the static analyzers are based.

In this case, we chose to use the Pluto [BRS07] and PoCC [Pou09] polyhedral compilers,
to easily access common loop nest optimizations : register tiling, tiling, skewing, vectoriza-
tion/simdization, loop unrolling, loop permutation, loop fusion. These transformations are
meant to maximize variety within the initial benchmark suite. Eventually, the generated
benchmarks are expected to highlight the impact on performance of the resulting behaviours.
For instance, skewing introduces non-trivial pointer arithmetics, increasing the pressure on
address computation units ; loop unrolling, among many things, opens the way to register
promotion, which exposes dependencies and alleviates load-store units ; vectorization stresses
SIMD units and decreases pressure on the front-end ; and so on.

4.3.3 Constraining utility

A constraining utility transforms the code in order to respect an arbitrary number of
non-functional properties. In this case, we apply a pass of microkernelification: we extract
a computational kernel from the arbitrarily deep and arbitrarily long loop nest generated by
the previous component. The loop chosen to form the microkernel is the one considered to
be the hottest; the hotness of a loop being obtained by multiplying the number of arithmetic
operations it contains by the number of times it is iterated. This metric allows us to prioritize
the parts of the code that have the greatest impact on performance.

At this point, the resulting code can compute a different result from the initial code; for
instance, the composition of tiling and kernelification reduces the number of loop iterations.
Indeed, our framework is not meant to preserve the functional semantics of the benchmarks.
Our goal is only to generate codes that are relevant from the point of view of performance
analysis.

4.3.4 C-to-binary compiler

A C-to-binary compiler varies binary optimization options by enabling/disabling auto-
vectorization, extended instruction sets, etc. We use gcc.

Eventually, the relevance of the microbenchmarks set generated using this approach derives
not only from initial benchmark suite and the relevance of the transformations chosen at each
stage, but also from the combinatorial explosion generated by the composition of the four stages.
In our experimental setup, this yields up to 144 microbenchmarks per benchmark of the original
suite.

4.4 Benchmarking harness
To compare full-kernel cycle measurements to throughput predictions on individual basic

blocks, we lift predictions by adding the weighted basic block predictions:

lifted_pred(K) =
∑

b∈BBs(K)
occurences(b)× pred(b)

Our benchmarking harness works in three successive stages. It first extracts the basic blocks
constituting a computation kernel, and instruments it to retrieve their respective occurrences
in the original context. It then runs all the studied tools on each basic block, while also

61

running measures on the whole computation kernel. Finally, the block-level results are lifted to
kernel-level results thanks to the occurrences previously measured.

4.4.1 Basic block extraction

Using the Capstone disassembler [QC], we split the assembly code at each control flow
instruction (jump, call, return, …) and each jump site, as in Algorithm 1 from subsection 2.4.3.

To accurately obtain the occurrences of each basic block in the whole kernel’s computation,
we then instrument it with gdb by placing a break point at each basic block’s first instruction
in order to count the occurrences of each basic block between two calls to the perf counters 1.
While this instrumentation takes about 50 to 100× more time than a regular run, it can safely
be run in parallel, as the performance results are discarded.

4.4.2 Throughput predictions and measures

The harness leverages a variety of tools: actual CPU measurement; the BHive basic block
profiler [Che+19]; llvm-mca [SL], uiCA [AR22] and IACA [Intb], which leverage microarchitec-
tural models to predict a block’s throughput; Ithemal [MAC18], a machine learning model;
and Gus [Gru19], a dynamic analyzer based on QEMU that works at the whole binary level.

The execution time of the full kernel is measured using Linux perf [Lin] CPU counters
around the full computation kernel. The measure is repeated four times and the smallest is
kept; this ensures that the cache is warm and compensates for context switching or other
measurement artifacts. Gus instruments the whole function body. The other tools included all
work at basic block level; these are run on each basic block of each benchmark.

We emphasize the importance, throughout the whole evaluation chain, to keep the exact
same assembled binary. Indeed, recompiling the kernel from source cannot be assumed to
produce the same assembly kernel. This is even more important in the presence of slight
changes: for instance, inserting IACA markers at the C-level — as is intended — around the
kernel might change the compiled kernel, if only for alignment regions. We argue that, in the
case of IACA markers, the problem is even more critical, as those markers prevent a binary
from being run by overwriting registers with arbitrary values. This forces a user to run and
measure a version which is different from the analyzed one. In our harness, we circumvent this
issue by adding markers directly at the assembly level, editing the already compiled version.
Our gdb instrumentation procedure also respects this principle of single-compilation. As QEMU
breaks the perf interface, we have to run Gus with a preloaded stub shared library to be able
to instrument binaries containing calls to perf.

4.4.3 Prediction lifting and filtering

We finally lift single basic block predictions to a whole-kernel cycle prediction by summing
the block-level results, weighted by the occurrences of the basic block in the original context
(formula above). If an analyzer fails on one of the basic blocks of a benchmark, the whole
benchmark is discarded for this analyzer.

In the presence of complex control flow, eg. with conditionals inside loops, our approach
based on basic block occurrences is arguably less precise than an approach based on paths
occurrences, as we have less information available — for instance, whether a branch is taken
with a regular pattern, whether we have constraints on register values, etc. We however chose
this block-based approach, as most throughput prediction tools work a basic block-level, and
are thus readily available and can be directly plugged into our harness.

1. We assume the program under analysis to be deterministic.

62

Finally, we control the proportion of cache misses in the program’s execution using
Cachegrind [NS03] and Gus; programs that have more than 15 % of cache misses on a warm
cache are not considered L1-resident and are discarded.

4.5 Experimental setup and evaluation
Running the harness described above provides us with 3500 benchmarks — after filtering out

non-L1-resident benchmarks —, on which each throughput predictor is run. Before analyzing
these results in Section 4.6, we evaluate the relevance of the methodology presented in Section 4.4
to make the tools’ predictions comparable to baseline hardware counter measures.

4.5.1 Experimental environment

The experiments presented in this chapter, unless stated otherwise, were all realized on a
Dell PowerEdge C6420 machine, from the Dahu cluster of Grid5000 in Grenoble [Bal+13]. The
server is equipped with 192 GB of DDR4 SDRAM — only a small fraction of which was used —
and two Intel Xeon Gold 6130 CPUs (x86-64, Skylake microarchitecture) with 16 cores each.

The experiments themselves were run inside a Docker environment based on Debian Bullseye.
Care was taken to disable hyperthreading to improve measurements stability. For tools whose
output is based on a direct measurement (perf, BHive), the benchmarks were run sequentially
on a single core with no experiments on the other cores. No such care was taken for Gus as,
although based on a dynamic run, its prediction is purely function of recorded program events
and not of program measures. All other tools were run in parallel.

We use llvm-mca v13.0.1, IACA v3.0-28-g1ba2cbb, BHive at commit 5f1d500, uiCA at
commit 9cbbe93, Gus at commit 87463c9, Ithemal at commit b3c39a8.

4.5.2 Comparability of the results

We define the relative error of a time prediction Cpred (in cycles) with respect to a baseline
Cbaseline as

err = |Cpred − Cbaseline|
Cbaseline

We assess the comparability of the whole benchmark, measured with perf, to lifted block-
based results by measuring the statistical distribution of the relative error of two series: the
predictions made by BHive, and the series of the best block-based prediction for each benchmark.

We single out BHive as it is the only tool able to measure — instead of predicting — an
isolated basic block’s timing. This, however, is not sufficient: as discussed later in Section 4.6.2,
BHive is not able to yield a result for about 40 % of the benchmarks, and is subject to large errors
in some cases. For this purpose, we also consider, for each benchmark, the best block-based
prediction: we argue that if, for most benchmarks, at least one of these predictors is able to
yield a satisfyingly accurate result, then the lifting methodology is sound in practice.

The result of this analysis is presented in Table 4.1 and in Figure 4.2. The results are in
a range compatible with common results of the field, as seen eg. in [AR22] reporting Mean
Absolute Percentage Error (MAPE, corresponding to the “Average” row) of about 10-15 %
in many cases. While lifted BHive’s average error is driven high by large errors on certain
benchmarks, investigated later in this article, its median error is still comparable to the errors
of state-of-the-art tools. From this, we conclude that lifted cycle measures and predictions are
consistent with whole-benchmark measures; and consequently, lifted predictions can reasonably
be compared to one another.

63

0 100 200 300 400
Relative error (%)

0

500

1000

1500

2000

Oc
cu

rre
nc

es

Best block-based

0 100 200 300 400
Relative error (%)

BHive

200 300 400
0

20

40

Figure 4.2 – Relative error distribution wrt. perf

Best block-based BHive

Datapoints 3500 2198
Errors 0 1302

(0 %) (37.20 %)
Average (%) 11.60 27.95
Median (%) 5.81 7.78
Q1 (%) 1.99 3.01
Q3 (%) 15.41 23.01

Table 4.1 – Relative error statistics wrt. perf

Polybench Frontend Ports Dependencies
benchmark yes no disagr. yes no disagr. yes no disagr.

2mm 34 61 25.8 % 25 13 70.3 % 18 29 63.3 %
3mm 44 61 18.0 % 30 13 66.4 % 23 37 53.1 %
atax 13 72 41.0 % 25 17 70.8 % 23 30 63.2 %
bicg 19 59 45.8 % 25 25 65.3 % 21 37 59.7 %
doitgen 51 25 40.6 % 36 30 48.4 % 17 22 69.5 %
mvt 27 53 33.3 % 9 18 77.5 % 7 32 67.5 %
gemver 62 13 39.5 % 2 48 59.7 % 1 28 76.6 %
gesummv 16 69 41.0 % 17 23 72.2 % 24 28 63.9 %
syr2k 51 37 38.9 % 8 42 65.3 % 19 34 63.2 %
trmm 69 27 25.0 % 16 30 64.1 % 15 30 64.8 %
symm 0 121 11.0 % 5 20 81.6 % 9 5 89.7 %
syrk 54 46 30.6 % 12 42 62.5 % 20 48 52.8 %
gemm 42 41 42.4 % 30 41 50.7 % 16 57 49.3 %
gramschmidt 48 52 21.9 % 16 20 71.9 % 24 39 50.8 %
cholesky 24 72 33.3 % 0 19 86.8 % 5 14 86.8 %
durbin 49 52 29.9 % 0 65 54.9 % 2 39 71.5 %
trisolv 53 84 4.9 % 6 22 80.6 % 4 16 86.1 %
jacobi-1d 18 78 33.3 % 66 9 47.9 % 0 13 91.0 %
heat-3d 32 8 72.2 % 26 0 81.9 % 0 0 100.0 %
seidel-2d 0 112 22.2 % 32 0 77.8 % 0 0 100.0 %
fdtd-2d 52 22 47.1 % 20 41 56.4 % 0 40 71.4 %
jacobi-2d 6 31 73.6 % 24 61 39.3 % 0 44 68.6 %
adi 12 76 21.4 % 40 0 64.3 % 0 0 100.0 %
correlation 18 36 51.8 % 19 30 56.2 % 23 45 39.3 %
covariance 39 36 37.5 % 4 34 68.3 % 19 53 40.0 %
floyd-warshall 74 16 29.7 % 16 24 68.8 % 20 8 78.1 %
Total 907 1360 35.2 % 509 687 65.8 % 310 728 70.3 %

Table 4.2 – Bottleneck reports from the studied tools

64

4.5.3 Relevance and representativity (bottleneck analysis)

The results provided by our harness are only relevant to evaluate the parts of the tools’
models that are stressed by the benchmarks generated; it is hence critical that our benchmark
generation procedure in Section 4.3 yields diverse results. This should be true by construction, as
the various polyhedral compilation techniques used stress different parts of the microarchitecture.

To assess this, we study the generated benchmarks’ bottlenecks, ie. architectural resources
on which a release of pressure improves execution time. Note that a saturated resource is
not necessarily a bottleneck: a code that uses eg. 100 % of the arithmetics units available for
computations outside of the critical path, at a point where a chain of dependencies is blocking,
will not run faster if the arithmetics operations are removed; hence, hardware counters alone
are not sufficient to find bottlenecks.

However, some static analyzers report the bottlenecks they detect. To unify their results
and keep things simple, we study three general kinds of bottlenecks.

— Frontend: the CPU’s frontend is not able to issue micro-operations to the backend fast
enough. IACA and uiCA are able to detect this.

— Ports: at least one of the backend ports has too much work; reducing its pressure would
accelerate the computation. llvm-mca, IACA and uiCA are able to detect this.

— Dependencies: there is a chain of data dependencies slowing down the computation.
llvm-mca, IACA and uiCA are able to detect this.

For each source benchmark from Polybench and each type of bottleneck, we report in
Table 4.2 the number of derived benchmarks on which all the tools agree that the bottleneck is
present or absent. We also report the proportion of cases in which the tools failed to agree. We
analyze those results later in Section 4.6.3.

As we have no source of truth indicating whether a bottleneck is effectively present in
a microbenchmark, we adopt a conservative approach, and consider only the subset of the
microbenchmarks on which the tools agree on the status of all three resources; for those, we
have a good confidence on the bottlenecks reported. Obviously, this approach is limited, because
it excludes microbenchmarks that might be worth considering, and is most probably subject to
selection bias.

Of the 3,500 microbenchmarks we have generated, 261 (7.5 %) are the subject of the
above-mentioned consensus. This sample is made up of microbenchmarks generated from 21
benchmarks — ie. for 5 benchmarks, none of the derived microbenchmarks reached a consensus
among the tools —, yielding a wide variety of calculations, including floating-point arithmetic,
pointer arithmetic or Boolean arithmetic. Of these, 200 (76.6 %) are bottlenecked on the CPU
front-end, 19 (7,3 %) on back-end ports, and 81 (31.0 %) on latency introduced by dependencies.
As mentioned above, this distribution probably does not transcribe the distribution among
the 3,500 original benchmarks, as the 261 were not uniformly sampled. However, we argue
that, as all categories are represented in the sample, the initial hypothesis that the generated
benchmarks are diverse and representative is confirmed — thanks to the transformations
described in Section 4.3.

4.5.4 Carbon footprint

Generating and running the full suite of benchmarks required about 30h of continuous
computation on a single machine. During the experiments, the power supply units reported a
near-constant consumption of about 350W. The carbon intensity of the power grid in France,
where the experiment was run, at the time of the experiments, was of about 29gCO2eq/kWh [Ele].

The electricity consumed directly by the server thus amounts to about 10.50 kWh. Assuming
a Power Usage Efficiency of 1.5, the total electricity consumption roughly amounts to 15.75 kWh,
or about 450 gCO2eq.

65

Bencher Datapoints Failures MAPE Median Q1 Q3 Kτ Time
(Count) (%) (%) (%) (%) (%) (CPU·h)

BHive 2198 1302 (37.20) 27.95 7.78 3.01 23.01 0.81 1.37
llvm-mca 3500 0 (0.00) 36.71 27.80 12.92 59.80 0.57 0.96
UiCA 3500 0 (0.00) 29.59 18.26 7.11 52.99 0.58 2.12
Ithemal 3500 0 (0.00) 57.04 48.70 22.92 75.69 0.39 0.38
Iaca 3500 0 (0.00) 30.23 18.51 7.13 57.18 0.59 1.31
Gus 3500 0 (0.00) 20.37 15.01 7.82 30.59 0.82 188.04

Table 4.3 – Statistical analysis of overall results

A carbon footprint estimate of the machine’s manufacture itself was conducted by the
manufacturer [Del19]. Additionally accounting for the extra 160 GB of DDR4 SDRAM [Gup+22],
the hardware manufacturing, transport and end-of-life is evaluated to 1,266 kgCO2eq. In 2023,
this computation cluster’s usage rate was 35 %. Assuming 6 years of product life, 30h of usage
represents about 2,050 gCO2eq. The whole experiment thus amounts to 2.5 kgCO2eq.

4.6 Results analysis
The raw complete output from our benchmarking harness — roughly speaking, a large table

with, for each benchmark, a cycle measurement, cycle count for each throughput analyzer, the
resulting relative error, and a synthesis of the bottlenecks reported by each tool — enables
many analyses that, we believe, could be useful both to throughput analysis tool developers
and users. Tool designers can draw insights on their tool’s best strengths and weaknesses, and
work towards improving them with a clearer vision. Users can gain a better understanding of
which tool is more suited for each situation.

4.6.1 Throughput results

The error distribution of the relative errors, for each tool, is presented as a box plot in
Figure 4.3. Statistical indicators are also given in Table 4.3. We also give, for each tool, its
Kendall’s tau indicator [Ken38] that we used earlier in chapter 2 and chapter 3.

These results are, overall, significantly worse than what each tool’s article presents. We
attribute this difference mostly to the specificities of Polybench: being composed of computation
kernels, it intrinsically stresses the CPU more than basic blocks extracted out of eg. the Spec
benchmark suite. This difference is clearly reflected in the experimental section of Palmed in
chapter 2: the accuracy of most tools is worse on Polybench than on Spec, often by more than
a factor of two.

As BHive and Ithemal do not support control flow instructions (eg. jump instructions),
those had to be removed from the blocks before analysis. While none of these tools, apart from
Gus — which is dynamic —, is able to account for branching costs, these two analyzers were also
unable to account for the front- and backend cost of the control flow instructions themselves as
well — corresponding to the TPU mode introduced by uiCA [AR22], while others measure TPL.

4.6.2 Understanding BHive’s results

The error distribution of BHive against perf, plotted right in Figure 4.2, puts forward
irregularities in BHive’s results. Since BHive is based on measures — instead of predictions —
through hardware counters, an excellent accuracy is expected. Its lack of support for control
flow instructions can be held accountable for a portion of this accuracy drop; our lifting method,
based on block occurrences instead of paths, can explain another portion. We also find that
BHive fails to produce a result in about 40 % of the kernels explored — which means that, for

66

BHive
llvm-mca UiCA

Ithemal
Iaca Gus

Best b
lock-based

0

100

200

300

400

500

600

Re
la

tiv
e

er
ro

r (
%

)

Figure 4.3 – Statistical distribution of relative errors

those cases, BHive failed to produce a result on at least one of the constituent basic blocks. In
fact, this is due to the difficulties we mentioned in section 4.1 earlier, related to the need to
reconstruct the context of each basic block ex nihilo.

The basis of BHive’s method is to run the code to be measured, unrolled a number of times
depending on the code size, with all memory pages but the code unmapped. As the code tries
to access memory, it will raise segfaults, caught by BHive’s harness, which allocates a single
shared-memory page, filled with a repeated constant, that it will map wherever segfaults occur
before restarting the program. The main causes of BHive failure are bad code behaviour (eg.
control flow not reaching the exit point of the measure if a bad jump is inserted), too many
segfaults to be handled, or a segfault that occurs even after mapping a page at the problematic
address.

The registers are also initialized, at the beginning of the measurement, to the fixed constant
0x2324000. We show through two examples that this initial value can be of crucial importance.

The following experiments are executed on an Intel(R) Xeon(R) Gold 6230R CPU (Cascade
Lake), with hyperthreading disabled.

Imprecise analysis. We consider the following x86-64 kernel.
1 vmulsd (%rax), %xmm3, %xmm0
2 vmovsd %xmm0, (%r10)

Note here that the vmulsd out, in1, in2 instruction is the scalar double-precision float
multiplication of values from in1 and in2, storing the result in out; while vmovsd out, in is a
simple mov operation from in to out operating on double-precision floats in %xmm registers.

When executed with all the general purpose registers initialized to the default constant,
BHive reports 9 cycles per iteration, since %rax and %r10 hold the same value, inducing a
read-after-write dependency between the two instructions. If, however, BHive is tweaked to
initialize %r10 to a value that aliases (wrt. physical addresses) with the value in %rax, eg.
between 0x10000 and 0x10007 (inclusive), it reports 19 cycles per iteration instead; while a
value between 0x10008 and 0x1009f (inclusive) yields the expected 1 cycle — except for values
in 0x10039-0x1003f and 0x10079-0x1007f, yielding 2 cycles as the store crosses a cache line
boundary.

67

Tool Ports Dependencies

llvm-mca 567 (24.6 %) 1032 (41.9 %)
uiCA 516 (22.4 %) 530 (21.5 %)
IACA 1221 (53.0 %) 900 (36.6 %)

Table 4.4 – Diverging bottleneck prediction per tool

In the same way, the value used to initialize the shared memory page can influence the
results whenever it gets loaded into registers.

Failed analysis. Some memory accesses will always result in an error; for instance, on Linux,
it is impossible to mmap at an address lower than /proc/sys/vm/mmap_min_addr, defaulting to
0x10000. Thus, with equal initial values for all registers, the following kernel would fail, since
the second operation attempts to load at address 0:

1 subq %r11, %r10
2 movq (%r10), %rax

Such errors can occur in more circumvoluted ways. The following x86-64 kernel, for instance,
is extracted from a version of the durbin kernel 2.

1 vmovsd 0x10(%r8, %rcx), %xmm6
2 subl %eax, %esi
3 movslq %esi, %rsi
4 vfmadd231sd -8(%r9, %rsi, 8), \
5 %xmm6, %xmm0

Here, BHive fails to measure the kernel when run with the general purpose registers initialized
to the default constant at the 2nd occurrence of the unrolled loop body, failing to recover from an
error at the vfmadd231sd instruction with the mmap strategy. Indeed, after the first iteration the
value in %rsi becomes null, then negative at the second iteration; thus, the second occurrence
of the last instruction fetches at address 0xfffffffff0a03ff8, which is in kernel space. This
microkernel can be benchmarked with BHive eg. by initializing %rax to 1.

Some other microkernels fail in a similar way when trying to access addresses that are
not a virtual address in canonical form space for x86-64 with 48 bits virtual addresses, as
defined in Section 3.3.7.1 of Intel’s Software Developer’s Manual [23c] and Section 5.3.1 of the
AMD64 Architecture Programmer’s Manual [23a]. Others still fail with accesses relative to the
instruction pointer, as BHive read-protects the unrolled microkernel’s instructions page.

4.6.3 Bottleneck prediction

We introduced in Section 4.5.3 earlier that some of the tools studied are also able to report
suspected bottlenecks for the evaluated program, whose results are presented in Table 4.2. This
feature might be even more useful than raw throughput predictions to the users of these tools
willing to optimize their program, as they strongly hint towards what needs to be enhanced.

In the majority of the cases studied, the tools are not able to agree on the presence or
absence of a type of bottleneck. Although it might seem that the tools are performing better
on frontend bottleneck detection, it must be recalled that only two tools (versus three in the
other cases) are reporting frontend bottlenecks, thus making it more likely for them to agree.

The Table 4.4, in turn, breaks down the cases on which three tools disagree into the number
of times one tool makes a diverging prediction — ie. the tool predicts differently than the two
others. In the case of ports, IACA is responsible for half of the divergences — which is not

2. durbin.pocc.noopt.default.unroll8.MEDIUM.kernel21.s in the full results

68

Bencher Datapoints Failures (%) MAPE Median Q1 Q3 Kτ

BHive 1365 1023 (42.84 %) 34.07 % 8.62 % 4.30 % 24.25 % 0.76
llvm-mca 2388 0 (0.00 %) 27.06 % 21.04 % 9.69 % 32.73 % 0.79
UiCA 2388 0 (0.00 %) 18.42 % 11.96 % 5.42 % 23.32 % 0.80
Ithemal 2388 0 (0.00 %) 62.66 % 53.84 % 24.12 % 81.95 % 0.40
Iaca 2388 0 (0.00 %) 17.55 % 12.17 % 4.64 % 22.35 % 0.82
Gus 2388 0 (0.00 %) 23.18 % 20.23 % 8.78 % 32.73 % 0.83

Table 4.5 – Statistical analysis of overall results, without latency bound through memory-carried
dependencies rows

sufficient to conclude that the prediction of the other tools is correct. In the case of dependencies,
however, there is no clear outlier, even though uiCA seems to fare better than others.

In no case one tool seems to be responsible for the vast majority of disagreements, which
could hint towards it failing to predict correctly this bottleneck. In the absence of a source of
truth indicating whether a bottleneck is effectively present, and with no clear-cut result for (a
subset of) tool predictions, we cannot conclude on the quality of the predictions from each tool
for each kind of bottleneck.

4.6.4 Impact of dependency-boundness

An overview of the full results table hints towards two main tendencies: on a significant
number of rows, the static tools — thus leaving Gus and BHive apart —, excepted Ithemal,
often yield comparatively bad throughput predictions together ; and many of these rows are those
using the O1 and O1autovect compilation setting (gcc with -O1, plus vectorisation options for
the latter).

To confirm the first observation, we look at the 30 % worst benchmarks — in terms of
MAPE relative to perf — for llvm-mca, uiCA and IACA — yielding 1050 rows each. All of
these share 869 rows (82.8 %), which we call jointly bad rows.

Among these 869 jointly bad rows, we further find that respectively 342 (39.4 %) and 337
(38.8 %) are compiled using the O1 and O1autovect, totalling to 679 (78.1 %) of O1-based rows,
against 129 (14.8 %) for default and 61 (7.0 %) for O3nosimd. This result is significant enough
to be used as a hint to investigate the issue.

Insofar as our approach maintains a strong link between the basic blocks studied and the
source codes from which they are extracted, it is possible to identify the high-level characteristics
of the concerned microbenchmarks. In the overwhelming majority (97.5 %) of those jointly
bad rows, the tools predicted fewer cycles than measured, meaning that a bottleneck is either
missed or underestimated. Manual investigation of a few simple benchmarks (no polyhedral
transformation applied, O1 mode, not unrolled) further hints towards dependencies: for instance,
the gemver benchmark, which is not among the badly predicted benchmarks, has this kernel:

1 for(c3)
2 A[c1][c3] += u1[c1] * v1[c3]
3 + u2[c1] * v2[c3];

while the atax benchmark, which is among the badly predicted ones, has this kernel:
1 for(c3)
2 tmp[c1] += A[c1][c3] * x[c3];

The first one exhibits no obvious dependency-boundness, while the second, accumulating on
tmp[c1] (independent of the iteration variable) lacks in instruction-level parallelism. Among
the simple benchmarks (as described above), 8 are in the badly predicted list, all of which
exhibit a read-after-write data dependency to the preceding iteration.

69

llvm-mca (full)

llvm-mca (no lat. bound)

UiCA (full)

UiCA (no lat. bound)

Iaca (full)

Iaca (no lat. bound)

0

100

200

300

400

500

600

Re
la

tiv
e

er
ro

r (
%

)

Figure 4.4 – Statistical distribution of relative errors, with and without pruning latency bound
through memory-carried dependencies rows

Looking at the assembly code generated for those in O1 modes, it appears that the dependen-
cies exhibited at the C level are compiled to memory-carried dependencies: the read-after-write
happens for a given memory address, instead of for a register. This kind of dependency, prone
to aliasing and dependent on the values of the registers, is hard to infer for a static tool and
is not supported by the analyzers under scrutiny in the general case; it could thus reasonably
explain the results observed.

There is no easy way, however, to know for certain which of the 3500 benchmarks are latency
bound: no hardware counter reports this. We investigate this further using Gus’s sensitivity
analysis: in complement of the “normal” throughput estimation of Gus, we run it a second
time, disabling the accounting for latency through memory dependencies. By construction, this
second measurement should be either very close to the first one, or significantly below. We then
assume a benchmark to be latency bound due to memory-carried dependencies when it is at
least 40 % faster when this latency is disabled; there are 1112 (31.8 %) such benchmarks.

Of the 869 jointly bad rows, 745 (85.7 %) are declared latency bound through memory-
carried dependencies by Gus. We conclude that the main reason for these jointly badly predicted
benchmarks is that the predictors under scrutiny failed to correctly detect these dependencies.

In Section 4.6.1, we presented in Figure 4.3 and Table 4.3 general statistics on the tools
on the full set of benchmarks. We now remove the 1112 benchmarks flagged as latency bound
through memory-carried dependencies by Gus from the dataset, and present in Figure 4.4 a
comparative box plot for the tools under scrutiny. We also present in Table 4.5 the same
statistics on this pruned dataset. While the results for llvm-mca, uiCA and IACA globally
improved significantly, the most noticeable improvements are the reduced spread of the results
and the Kendall’s τ correlation coefficient’s increase.

From this, we argue that detecting memory-carried dependencies is a weak point in current
state-of-the-art static analyzers, and that their results could be significantly more accurate if
improvements are made in this direction.

70

Conclusion and future works
In this chapter, we have presented a fully-tooled approach that enables:
— the generation of a wide variety of microbenchmarks, reflecting both the expertise

contained in an initial benchmark suite, and the diversity of code transformations
allowing to stress different aspects of a performance model — or even a measurement
environment, eg. BHive; and

— the comparability of various measurements and analyses applied to each of these mi-
crobenchmarks.

Thanks to this tooling, we were able to show the limits and strengths of various performance
models in relation to the expertise contained in the Polybench suite. We discuss throughput
results in Section 4.6.1 and bottleneck prediction in Section 4.6.3.

We were also able to demonstrate the difficulties of reasoning at the level of a basic block
isolated from its context. We specifically study those difficulties in the case of BHive in
Section 4.6.2. Indeed, the actual values — both from registers and memory — involved in a
basic block’s computation are constitutive not only of its functional properties (ie. the result of
the calculation), but also of some of its non-functional properties (eg. latency, throughput).

We were also able to show in Section 4.6.4 that state-of-the-art static analyzers struggle
to account for memory-carried dependencies; a weakness significantly impacting their overall
results on our benchmarks. We believe that detecting and accounting for these dependencies is
an important topic — which we will tackle in the following chapter.

Moreover, we present this work in the form of a modular software package, each component
of which exposes numerous adjustable parameters. These components can also be replaced
by others fulfilling the same abstract function: another initial benchmark suite in place of
Polybench, other loop nest optimizers in place of PLUTO and PoCC, other code analyzers, and
so on. This software modularity reflects the fact that our contribution is about interfacing and
communication between distinct issues.

Furthermore, we believe that the contributions we made in the course of this work may
eventually be used to face different, yet neighbouring issues. These perspectives can also be
seen as future works:

Program optimization. The whole program processing we have designed can be used not
only to evaluate the performance model underlying a static analyzer, but also to guide program
optimization itself. In such a perspective, we would generate different versions of the same
program using the transformations discussed in Section 4.3 and colored blue in Figure 4.1.
These different versions would then feed the execution and measurement environment outlined
in Section 4.4 and colored orange in Figure 4.1. Indeed, thanks to our previous work, we know
that the results of these comparable analyses and measurements would make it possible to
identify which version is the most efficient, and even to reconstruct information indicating why
(which bottlenecks, etc.).

However, this approach would require that these different versions of the same program
are functionally equivalent, ie. that they compute the same result from the same inputs; yet
we saw in Section 4.4 that, as it stands, the transformations we apply are not concerned with
preserving the semantics of the input codes. To recover this semantic preservation property,
abandoning the kernelification pass we have presented suffices; this however would require to
control L1-residence otherwise.

Dataset building. Our microbenchmarks generation phase outputs a large, diverse and
representative dataset of microkernels. In addition to our harness, we believe that such a dataset
could be used to improve existing data-dependant solutions.

71

Inductive methods, for instance in AnICA, strive to preserve the properties of a basic block
through successive abstractions of the instructions it contains, so as to draw the most general
conclusions possible from a particular experiment. Currently, AnICA starts off from randomly
generated basic blocks. This approach guarantees a certain variety, and avoids over-specialization,
which would prevent it from finding interesting cases too far from an initial dataset. However, it
may well lead to the sample under consideration being systematically outside the relevant area
of the search space — ie. having no relation to real-life programs or those in the user’s field.

On the other hand, machine learning methods based on neural networks, for instance in
Ithemal, seek to correlate the result of a function with the characteristics of its input — in
this case to correlate a throughput prediction with the instructions making up a basic block —
by backpropagating the gradient of a cost function. In the case of Ithemal, it is trained on
benchmarks originating from a data suite. As opposed to random generation, this approach
offers representative samples, but comes with a risk of lack of variety and over-specialization.

Comparatively, our microbenchmark generation method is natively meant to produce a
representative, varied and large dataset. We believe that enriching the dataset of the above-
mentioned methods with our benchmarks might extend their results and reach.

72

Chapter 5

Static extraction of memory-carried
dependencies

In the previous chapter, our major finding was that, in the current state of the art, code
analyzers deal poorly with memory-carried dependencies. We found this flaw to be responsible,
in our dataset, for a roughly 1.5× increase in MAPE, and up to 2.6× on the third quartile of
error.

The large impact of dependencies on the final runtime of a kernel is, in reality, not very
surprising. In chapters 2 and 3, we did not consider latency; hence, the only impact of an
instruction was its throughput, each instruction being issued as soon as possible. Dependencies,
however, force the processor to wait for some instructions’ results before issuing some others;
the latency of an instruction becomes a critical factor.

On Skylake, for instance, the instruction add %rax, %rbx has a latency of one full cycle. Thus,
the kernel

1 add %rax, %rbx
2 add %rbx, %rcx

executes, in steady state, in half a cycle without accounting for the dependency; yet these two
instructions in isolation would take 1 1/4 cycles when accounting for the dependency. Some
instructions still are more extreme; for instance, the vfmadd*pd %ymm0, %ymm1, %ymm2 family of
instructions have a latency of four full cycles, while without dependencies, two can be issued
every cycle.

In the previous chapter, we also presented Gus, a dynamic code analyzer based on QEMU,
which we found to be very effective to detect memory-carried dependencies and the slowdown
they incur on the whole program. However, this solution results in a runtime increase of about
two orders of magnitude, which may not be acceptable in many use cases.

In this chapter, we instead present staticdeps, a fully static analyzer able to detect
memory-carried dependencies in many cases. We evaluate it by providing uiCA with its analysis
of dependencies, bringing it on-par with Gus on the full, non-pruned dataset of the previous
chapter.

5.1 Types of dependencies
A dependency, in the most general sense, can be seen as an interaction between two

instructions stemming from shared data. This definition is willingly broad as, depending on the
circumstances, the CPU implementation, …, some categories of dependencies must be taken
into account, while some may be ignored.

73

Read-write categories. The first distinction that can be made between dependencies, and
the one that is most often made, is whether the data through which the dependency is created
is read or written. They can be broken down into four categories:

— read-after-write (RaW);
— write-after-write (WaW);
— write-after-read (WaR);
— read-after-read (RaR).
For instance, in the kernel presented in the introduction of this chapter, the first instruction

(add %rax, %rbx) reads its first operand, the register %rax, and both reads and writes its second
operand %rbx. The second add has the same behaviour. Thus, as %rbx is written at line 1, and
read at line 2, there is a read-after-write dependency between the two.

Most of the time, dependency is actually used to mean read-after-write dependency, sometimes
called “flow dependency”. However, depending on the actual hardware implementation of the
architecture, other kinds of dependencies might induce a latency. While a read-after-read
dependency will not induce a latency in the vast majority of architectures, a write-after-read
could prevent instructions to be re-ordered in a way that the writing instruction commits its
result before the reading instruction uses the previously stored value. In most modern CPUs,
the processor actually has more physical registers than what is exposed to the user through
the ISA; a renaming phrase will allocate those registers to avoid the effects of WaR and WaW
dependencies as much as possible.

For the present chapter, we only consider read-after-write dependencies; however, all the
techniques we present are applicable to other types of dependencies if the considered architecture
requires to take them into account.

Dependency medium. In the example above, we only introduced dependencies induced
through registers, or register-carried. There are, however, other channels.

As we saw in the introduction to this chapter, as well as in the previous chapter, dependencies
can also be memory-carried, in more or less straightforward ways, such as in the examples from
Listing 2, where the last line always depends on the first.

1 add %rax, (%rbx)
2 add (%rbx), %rcx

1 add %rax, (%rbx)
2 add $8, %rbx
3 add -8(%rbx), %rcx

1 add %rax, (%rbx)
2 lea 16(%rbx), %r10
3 add -16(%r10), %rcx

Listing 2 – Examples of memory-carried dependencies.

Some dependencies are also flag-carried. These are very akin to register-carried dependency,
but are not directly visible in the instruction. For instance, a subtract operation may set flags
indicating whether the result is zero, and a subsequent jump may use this flag to chose whether
the branch is taken or not.

Depending on the architecture, other channels may still exist.

In this chapter, we focus on register-carried and memory-carried dependencies, with a large
emphasis on memory-carried dependencies.

Presence of loops. The previous examples were all pieces of straight-line code in which a
dependency arose. However, many dependencies are actually loop-carried, such as those in
Listing 3. In Listing 3a, line 2 depends on the previous iteration’s line 2 as %r10 is read, then
written back. In Listing 3b, line 3 depends on line 2 of the same iteration; but line 2 alsp
depends on line 3 two iterations ago by reading -16(%rbx, %r10).

74

1 loop:
2 add (%rax), %r10
3 add $8, %rax
4 jmp loop

(a) Compute the sum of array A’s terms in %r10.
%rax points to A.

1 loop:
2 mov -16(%rbx, %r10), (%rbx, %r10)
3 add (%rax, %r10), (%rbx, %r10)
4 add $8, %r10
5 jmp loop

(b) Compute B[i] = A[i] + B[i-2]. %rax points
to A, %rbx points to B.

Listing 3 – Examples of loop-carried dependencies.

5.2 A baseline: dynamic dependencies detection with valgrind

As we already saw, a dynamic analyzer, such as Gus, has direct access to the actual data
dependencies occurring throughout an execution. While such analyzers are often too slow to
use in practice, they can be used as a baseline to evaluate static alternatives.

As it is a complex tool performing a wide range of analyses, Gus is, however, unnecessarily
complex to simply serve as a baseline. For the same reason, it is also impractically slower than
a simple dynamic analysis. For this reason, we implement depsim, a dynamic analysis tool
based on top of valgrind, whose goal is to report dependencies encountered at runtime.

5.2.1 Valgrind

Most low-level developers and computer scientists know valgrind [NS03] as a memory
analysis tool, reporting bad memory accesses, memory leaks and the like. However, this is
only a small part of valgrind — the memcheck tool. The whole program is actually a binary
instrumentation framework, upon which the famous memcheck is built.

valgrind supports a wide variety of platforms, including x86-64 and ARM. However, at
the time of the writing, it supports AVX2, but does not yet support AVX-512 on x86-64 [Val23]

— there is, however, ongoing work in that direction [Vol22]. While its documentation is seemingly
sparse and not frequently maintained, its code is well-commented and readable, with interfaces
cleanly exposed; thus, once one gets a good enough comprehension of how the project’s code
is structured, this lack of documentation is not problematic. valgrind is also a free and
open-source software, distributed under the GNU GPLv2 license.

In order to instrument a binary file, valgrind first lifts the original assembly code to an
intermediate representation. The instrumentation tool is then able to modify this intermediate
representation before passing it back to Valgrind, which will re-compile it to a native binary
before running it.

While this intermediate representation, called VEX, is convenient to instrument a binary, it
may further be used as a way to obtain semantics for some assembly code, independently of the
Valgrind framework.

5.2.2 Depsim

The tool we wrote to extract runtime-gathered dependencies, depsim, is able to extract
dependencies through both registers, memory and temporary variables — in its intermediate
representation, Valgrind keeps some values assigned to temporary variables in static single-
assignment (SSA) form. It however supports a flag to detect only memory-carried dependencies,
as this will be useful to evaluate our static algorithm later.

As a dynamic tool, the distinction between straight-line code and loop-carried dependencies
is irrelevant, as the analysis follows the actual program flow.

75

In order to track dependencies, each basic block of the program is instrumented. Depen-
dencies are stored as a hash table and represented as a pair of source and destination program
counter; they are mapped to a number of encountered occurrences.

Dependencies through temporaries are, by construction, resident to a single basic block
— they are thus statically detected at instrumentation time. At runtime, the occurrence count
of those dependencies is updated whenever the basic block is executed.

For both register- and memory-carried dependencies, each write is instrumented by adding
a runtime write to a shadow register file or memory, noting that the written register or memory
address was last written at the current program counter. Each read, in turn, is instrumented
by adding a fetch to this shadow register file or memory, retrieving the last program counter at
which this location was written to; the dependency count between this program counter and
the current program counter is then incremented.

In practice, the shadow register file is simply implemented as an array holding, for each
register id, the last program counter that wrote at this location. The shadow memory is instead
implemented as a hash table.

At the end of the run, all the dependencies retrieved are reported. Care is taken to translate
back the runtime program counters to addresses in the original ELF files, using the running
process’ memory map.

Dependencies are mostly relevant if their source and destination are close enough to be
computationally meaningful. To this end, we also introduce in depsim a notion of dependency
lifetime. As we do not have access without a heavy runtime slowdown to elapsed cycles in
valgrind, we define a timestamp as the number of instructions executed since beginning of
the program’s execution; we increment this count at each branch instruction to avoid excessive
instrumentation slowdown.

We further annotate every write to the shadow memory with the timestamp at which it
occurred. Whenever a dependency should be added, we first check that the dependency has not
expired — that is, that it is not older than a given threshold. This threshold is tunable for each
run — and may be set to infinity to keep every dependency.

5.3 Static dependencies detection
Depending on their type, some dependencies are significantly harder to statically detect

than others.
Register-carried dependencies, when in straight-line code, can be detected by keeping

track of which instruction last wrote each register in a shadow register file. This is most often
supported by code analyzers — for instance, llvm-mca and uiCA support it.

Loop-carried dependencies can, to some extent, be detected the same way. As the basic block
is always assumed to be the body of an infinite loop, a straight-line analysis can be performed
on a duplicated kernel. This strategy is eg. adopted by Osaca [Lau+19, §II.D]. When dealing
only with register accesses, this strategy is always sufficient: as each iteration always executes
the same basic block, it is not possible for an instruction to depend on another instruction two
iterations earlier or more.

Memory-carried dependencies, however, are significantly harder to tackle. While basic
heuristics can handle some simple cases, in the general case two main difficulties arise:

(i) pointers may alias, ie. point to the same address or array; for instance, if %rax points
to an array, it may be that %rbx points to %rax + 8, making the detection of such a
dependency difficult;

(ii) arbitrary arithmetic operations may be performed on pointers, possibly through diverting
paths: eg. it might be necessary to detect that %rax+16 << 2 is identical to %rax+128/2;

76

this requires semantics for assembly instructions and tracking formal expressions across
register values — and possibly even memory.

Tracking memory-carried dependencies is, to the best of our knowledge, not done in code
analyzers, as our results in chapter 4 suggests.

While the strategy previously used for register-carried dependencies is sufficient to detect
loop-carried dependencies from one occurrence to the next one, it is not sufficient at all times
when the dependencies tracked are memory-carried. For instance, in the second example from
Listing 3, an instruction depends on another two iterations ago.

Dependencies can reach arbitrarily old iterations of a loop: in this example, -8192(%rbx, %r10)
may be used to reach 1 024 iterations back. However, while far-reaching dependencies may
exist, they are not necessarily relevant from a performance analysis point of view. Indeed, if an
instruction i2 depends on a result previously produced by an instruction i1, this dependency
is only relevant if it is possible that i1 is not yet completed when i2 is considered for issuing

— else, the result is already produced, and i2 needs never wait to execute.
The reorder buffer (ROB) of a CPU can be modelled as a sliding window of fixed size over

µOPs. In particular, if a µOP µ1 is not yet retired, the ROB may not contain µOPs more than
the ROB’s size ahead of µ1. This is in particular also true for instructions, as the vast majority
of instructions decode to at least one µOP 1. We formalize this in subsection 5.3.1 below.

A possible solution to detect loop-carried dependencies in a kernel K is thus to unroll it
until it contains about |ROB|+ |K|. This ensures that every instruction in the last kernel can
find dependencies reaching up to |ROB| back.

On Intel CPUs, the reorder buffer size contained 224 µOPs on Skylake (2015), or 512 µOPs
on Golden Cove (2021) [Wik21]. These sizes are small enough to reasonably use this solution
without excessive slowdown.

5.3.1 Far-reaching dependencies do not impact performance

Definition (Distance between instructions)

Let (Ip)0≤p<n be a trace of executed instructions. For p < p′, distance
(
Ip, Ip′

)
is the overall

number of decoded µOPs for the subtrace (Ir)p<r<p′ .

Theorem (Long distance dependencies)

Given a kernel K, there exists R ∈ N, only dependent of microarchitectural parameters,
such that the presence or absence of a dependency between two instructions that are
separated by at least R− 1 other µOPs has no impact on the performance of this kernel.

More formally, let K be a kernel of n instructions. Let (Ip)p∈N be the trace of K’s
instructions executed in a loop. For any p, q ∈ N such that distance (Ip, Iq) ≥ R − 1, K
is invariant in the presence or absence of a dependency between the pairs of instructions
(Ip+kn, Iq+kn)k∈N.

To prove this assertion, we require a few postulates to model the functioning of a CPU and,
in particular, how µOPs transit in (decoded) and out (retired) the reorder buffer.

1. Some mov instructions from register to register may, for instance, only have an impact on the renamer; no
µOPs are dispatched to the backend.

77

Postulate (Reorder buffer as a circular buffer)

The reorder buffer is a circular buffer of size R ∈ N+. It contains only decoded µOPs. Let
us denote id the µOP at position d in the reorder buffer. Assume id just got decoded.

As the buffer is a circular FIFO, we have that for every q and q′ in [0, R):

(q − d− 1)%R < (q′ − d− 1)%R ⇐⇒ iq was decoded before iq′

If a µOP has not been retired yet (issued and executed), it cannot be replaced in the ROB
by any freshly decoded instruction. In other words, every non-retired decoded µOP — also
called in-flight — remains in the reorder buffer. This is possible thanks to the notion of full
reorder buffer :

Postulate (Full reorder buffer)

Let us denote by id the µOP that just got decoded. The reorder buffer is said to be full if
for q = (d + 1)%R, µOP iq is not retired yet.

If the reorder buffer is full, then instruction decoding is stalled.

Let (Ip)0≤p<n be a trace of executed instructions. Each of these instructions are iteratively
decoded, issued, and retired. We will also denote by (iq)0≤q<m the trace of decoded µOPs. To
prove the theorem above, we need to state that any two in-flight µOPs are distant of at most R
µOPs.

For any instruction Ip, we denote as Qp the range of indices such that (iq)q∈Qp are the µOPs
obtained from the decoding of Ip.

Note that in practice, it is possible that we do not have
⋃

pQp = [0, n), as eg. branch
mispredictions may introduce unwanted µOPs in the pipeline. However, as the worst case for
the lemma below occurs when no such “spurious” µOPs are present, we may safely ignore such
occurrences.

Lemma (Distance of in-flight µOPs)

For any pair of instructions (Ip, Ip′), and two corresponding µOPs, (iq, iq′) such that
q ∈ Qp, q′ ∈ Qp′ ,

inflight(iq) ∧ inflight(iq′) =⇒ distance
(
Ip, Ip′

)
< R− 1

Proof. The sets (Qp) are disjoint pairwise, and for any pair of instructions (Ip, Ip′), and
any two corresponding µOPs, (iq, iq′) such that q ∈ Qp, q′ ∈ Qp′ , p < p′ =⇒ q < q′.

Thus, distance
(
Ip, Ip′

)
< |q′ − q|.

Observe that at any time, the content of the ROB can be seen as a window of length at
most R over (iq)0≤q<m. Consequently, if both iq and iq′ are in-flight then |q′ − q| < R, and
thus distance

(
Ip, Ip′

)
< R− 1.

78

Postulate (Issue delay)

Reasons why the issue of a µOP i is delayed can be:
1. i is not yet in the reorder buffer
2. i depends on µOP i′ which is not retired yet
3. ports on which i can be mapped are all occupied

Proof of Long distance dependencies theorem. The theorem above is now a direct conse-
quence of the previous observations. Let us consider two µOPs, i and i′, respectively
introduced by instructions Ip and Iq. Assume a delayed issue for µOP i where the unique
cause is a dependence from µOP i′, that is:

1. i is already in the reorder buffer
2. i depends on µOP i′ which is not retired yet
3. at least one port on which i can be mapped is available

Since i′ is not retired yet and i′ is “before” i, i′ is still in the reorder buffer, ie. both i and
i′ are in the reorder buffer.

By the previous lemma, we have distance (Ip, Iq) < R− 1.
By contrapositive, for any two instructions Ia, Ib such that distance (Ia, Ib) ≥ R− 1, no

µOP of Ib may have its execution delayed by a dependency between Ia and Ib.

Remark
What we stated earlier is a direct consequence of this theorem: to detect meaningful
dependencies over a kernel K, it suffices to analyze the kernel unrolled enough times to
obtain a sequence of R + |K| instructions, as this yields a sequence where every instruction
from the last occurrence of K is preceded by at least R− 1 instructions.

5.4 Staticdeps
The static analyzer we present, staticdeps, only aims to tackle the difficulty (ii) mentioned

in section 5.3: tracking dependencies across arbitrarily complex pointer arithmetic.
To do so, staticdeps works at the basic-block level, unrolled enough times to fill the reorder

buffer as detailed above; this way, arbitrarily long-reaching relevant loop-carried dependencies
can be detected.

This problem could be solved using symbolic calculus algorithms. However, those algorithms
are not straightforward to implement, and the equality test between two arbitrary expressions
can be costly.

5.4.1 The staticdeps heuristic

Instead, we use a heuristic based on random values. We consider the setR =
{
0, 1, . . . , 264 − 1

}
of values representable by a 64-bits unsigned integer; we extend this set to R̄ = R∪{⊥}, where
⊥ denotes an invalid value. We then proceed as previously for register-carried dependencies,
applying the following principles.

— Whenever an unknown value is read, either from a register or from memory, generate
a fresh value from R, uniformly sampled at random. This value is saved to a shadow
register file or memory, and will be used again the next time this same data is accessed.

79

function staticdeps(basic_block)
deps ← ∅
insn_count, cur_iter, cur_instruction ← 0
shadow_memory, shadow_registers, last_wrote_at ← ∅map
function fresh

return random uint64_t value
function read_memory(address)

Assert address 6= ⊥
if address 6∈ shadow_memory then

shadow_memory[address] ← fresh
return shadow_memory[address]

function read_register(register)
… . Likewise

function expr_value(expr)
if expr == Register(reg) then

return read_register(reg)
else if expr == Memory(addr_expr) then

addr ← expr_value(expr)
if addr ∈ last_wrote_at then

deps ← deps ∪ (last_wrote_at[addr] → (cur_iter, cur_instruction))
return read_memory(addr)

else if expr == IntegerArithmeticOp(operator, op1, …, opN) then
if expr_value(op_i) == ⊥ for any i then

return ⊥
return semantics(operator)(. Provided by Valgrind’s Vex

expr_value(op1), …, expr_value(opN))
else return ⊥

function iter_statement(statement)
lhs, rhs ← statement
if lhs == Register(reg) then

shadow_register[reg] ← expr_value(rhs)
else if lhs == Memory(addr_expr) then

addr ← expr_value(addr_expr)
last_wrote_at[addr] ← (cur_iter, cur_instruction)
shadow_memory[addr] ← expr_value(rhs)

else if … then . Etc.

while insn_count <= |ROB| + |basic_block| do
cur_instruction ← 0
for statement ∈ basic_block do

iter_statement(statement)
if statement is last statement of an instruction then

. An instruction can be composed of multiple statements
cur_instruction ← cur_instruction + 1

cur_iter ← cur_iter + 1
return deps

Algorithm 2 – The staticdeps algorithm

80

— Whenever an integer arithmetic operation is encountered, compute the result of the
operation and save the result to the shadow register file or memory.

— Whenever another kind of operation, or an operation that is unsupported, is encountered,
save the destination operand as ⊥; this operation is assumed to not be valid pointer
arithmetic. Operations on ⊥ always yield ⊥ as a result.

— Whenever writing to a memory location, compute the written address using the above
principles, and proceed as with a dynamic analysis, keeping track of the instruction that
last wrote to a memory address.

— Whenever reading from a memory location, compute the read address using the above
principles, and generate a dependency from the current instruction to the instruction
that last wrote to this address (if known).

5.4.2 Practical implementation

We implement staticdeps in Python, using pyelftools and the capstone disassembler
— which we already introduced in section 2.4 — to extract and disassemble the targeted basic
block. The semantics needed to compute encountered operations are obtained by lifting the
kernel’s assembly to valgrind’s VEX intermediary representation.

The implementation of the heuristic detailed above provides us with a raw list of dependencies
across iterations of the considered basic block. We then “re-roll” the unrolled kernel by
transcribing each dependency to a triplet (source_insn, dest_insn, ∆k), where the first two
elements are the source and destination instruction of the dependency in the original, non-
unrolled kernel, and ∆k is the number of iterations of the kernel between the source and
destination instruction of the dependency.

We detail our staticdeps algorithm in psudocode in Algorithm 2.
Finally, we filter out spurious dependencies: each dependency found should occur for each

kernel iteration i at which i + ∆k is within bounds. If the dependency is found for less than
80 % of those iterations, the dependency is declared spurious and is dropped.

5.4.3 Limitations

In chapter 4, we argued that one of the shortcomings that most crippled state-of-the-art
tools was that analyses were conducted out-of-context, considering only the basic block at hand.
This analysis is also true for staticdeps, as it is still focused on a single basic block in isolation;
in particular, any aliasing that stems from outside of the analyzed basic block is not visible to
staticdeps.

Work towards a broader analysis range, eg. at the scale of a function, or at least initializing
values with gathered assertions — maybe based on abstract interpretation techniques — could
be beneficial to the quality of dependencies detections.

Given how staticdeps’s heuristic is based on randomness, it may yield false positives:
two registers could theoretically be assigned the same value sampled at random, making them
aliasing addresses. This is, however, very improbable, as values are sampled from a set of
cardinality 264. If necessary, the error can be reduced by amplification: running multiple times
the algorithm on different randomness seeds reduces the error exponentially.

Conversely, staticdeps should not present false negatives due to randomness. Dependencies
may go undetected, eg. because of out-of-scope aliasing or unsupported operations. However, no
dependency that falls into the scope of depsim’s analysis should be missed because of random
initialisations.

81

5.5 Evaluation
We evaluate the relevance of staticdeps results in two ways: first, we compare the detected

dependencies to those extracted at runtime by depsim, to evaluate the proportion of dependencies
actually detected. Then, we evaluate the relevance of our static analysis from a performance
debugging point of view, by enriching uiCA’s model with staticdeps and assessing, using
CesASMe, the benefits brought to the model.

We finally evaluate our claim that using a static model instead of a dynamic analysis, such
as Gus, makes staticdeps yield a result in a reasonable amount of time.

5.5.1 Comparison to depsim results

The staticdeps’s model contribution largely resides in its ability to track memory-carried
dependencies, including loop-carried ones. We thus focus on evaluating this aspect, and restrict
both depsim and staticdeps to memory-carried dependencies.

We use the binaries produced by CesASMe as a dataset, as we already assessed its relevance
and contains enough benchmarks to be statistically meaningful. We also already have tooling and
basic-block segmentation available for those benchmarks, making the analysis more convenient.

Recompiling CesASMe’s dataset

In practice, benchmarks from CesASMe are roughly of the following form:
1 for(int measure=0; measure < NUM_MEASURES; ++measure) {
2 measure_start();
3 for(int repeat=0; repeat < NUM_REPEATS; ++repeat) {
4 for(int i=0; i < BENCHMARK_SIZE; ++i) {
5 /* Some kernel, independent of measure, repeat */
6 }
7 }
8 measure_stop();
9 }

While this is sensible for conducting throughput measures, it also introduces unwanted
dependencies. If, for instance, the kernel consists in A[i] = C ×A[i] + B[i], implemented by

1 loop:
2 vmulsd (%rax,%rdi), %xmm0, %xmm1
3 vaddsd (%rbx,%rdi), %xmm1, %xmm1
4 vmovsd %xmm1, (%rax,%rdi)
5 add $8, %rdi
6 cmp %rdi, %r10
7 jne loop

a read-after-write dependency from line 4 to line 2 is reported by depsim —- although there is
no such dependency inherent to the kernel.

However, each iteration of the measure (outer) loop and each iteration of the repeat (inner)
loop will read again each A[i] (ie. (%rax,%rdi) in the assembly) value from the previous inner
loop, and write it back. This creates a dependency to the previous iteration of the inner loop,
which should in practice be meaningless if BENCHMARK_SIZE is large enough. Such dependencies,
however, pollute the evaluation results: as depsim does not report a dependency’s distance,
they are considered meaningful; and as they cannot be detected by staticdeps — which is
unaware of the outer and inner loop —, they introduce unfairness in the evaluation. The actual
loss of precision introduced by not discovering such dependencies is instead assessed later by
enriching uiCA with staticdeps.

To avoid detecting these dependencies with depsim, we recompile CesASMe’s benchmarks
from the C source code of each benchmark with NUM_MEASURES = NUM_REPEATS = 1. We use these

82

covp (%) covu (%) covw (%)

96.0 94.4 98.3

Table 5.1 – Periodic, unweighted and weighted coverage of staticdeps on CesASMe’s binaries
recompiled without repetitions, with a lifetime of 512.

recompiled benchmarks only in the current section. While we do not re-run code transformations
from the original Polybenchs, we do recompile the benchmarks from C source. Thus, the results
from this section are not comparable with results from other sections, as the compiler may have
used different optimisations, instructions, etc.

Dependency coverage

For each binary generated by CesASMe, we use its cached basic block splitting and occurrence
count. Among each binary, we discard any basic block with fewer than 10 % of the occurrence
count of the most-hit basic block; this avoids considering basic blocks which were not originally
inside loops, and for which loop-carried dependencies would make no sense — and could possibly
create false positives.

For each of the considered binaries, we run our dynamic analysis, depsim, and record its
results. We use a lifetime of 512 instructions for this analysis, as this is roughly the size of
recent Intel reorder buffers [Wik21]; as discussed in section 5.3, dependencies spanning farther
than the size of the ROB are not microarchitecturally relevant. Dependencies whose source and
destination program counters are not in the same basic block are discarded, as staticdeps
cannot detect them by construction.

For each of the considered basic blocks, we run our static analysis, staticdeps. We discard
the ∆k parameter — how many loop iterations the dependency spans —, as our dynamic
analysis does not report an equivalent parameter, but only a pair of program counters.

Dynamic dependencies from depsim are converted to periodic dependencies in the sense of
staticdeps as described in subsection 5.4.2: only dependencies occurring on at least 80% of
the block’s iterations are kept — else, dependencies are considered measurement artifacts. The
periodic coverage of staticdeps dependencies for this basic block wrt. depsim is the proportion
of dependencies found by staticdeps among the periodic dependencies extracted from depsim:

covp = |found|
|found|+ |missed|

We also keep the raw dependencies from depsim — that is, without converting them to
periodic dependencies. From these, we consider two metrics: the unweighted dependencies
coverage,

covu = |found|
|found|+ |missed|

identical to covp but based on unfiltered dependencies, as well as the weighted dependencies
coverage,

covw =
∑

d∈found ρd∑
d∈found ∪ missed ρd

where ρd is the number of occurrences of the dependency d, dynamically detected by depsim.
Note that such a metric is not meaningful for periodic dependencies as, by construction, each
dependency occurs as many times as the loop iterates.

These metrics are presented for the 3 500 binaries of CesASMe in Table 5.1. The obtained
coverage is consistent between the three metrics used (covp, covu, covw) and the reported
coverage is very close to 100 %, giving us good confidence on the accuracy of staticdeps.

83

covu (%) covw (%)

95.0 93.7

Table 5.2 – Unweighted and weighted coverage of staticdeps on CesASMe’s binaries recompiled
without repetitions, with an infinite lifetime, as a proxy for points-to analysis.

“Points-to” aliasing analysis

The same methodology can be re-used as a proxy for estimating the rate of aliasing
independent pointers in our dataset. Indeed, a major approximation made by staticdeps is to
assume that any new encountered pointer — function parameters, value read from memory,
… — does not alias with previously encountered values. This is implemented by the use of a
fresh random value for each value yet unknown.

Determining which pointers may point to which other pointers — and, by extension, may
point to the same memory region — is called a points-to analysis [EGH94]. In the context of
staticdeps, it characterizes the pointers for which taking a fresh value was not representative
of the reality.

If we detect, through dynamic analysis, that a value derived from a pointer a shares a value
with one derived from a pointer b – say, a + k == b + l —, we can deduce that a points-to b.
This is true even if a + k at the very beginning of the execution is equal to b + l at the very end
of the execution: although the pointers will not alias (that is, share the same value at the same
moment), they still point to the same memory region and should not be treated as independent.

Our dynamic analyzer, depsim, does not have this granularity, as it only reports dependencies
between two program counters. A dependency from a PC p to a PC q however implies that a
value written to memory at q was read from memory at p, and thus that one of the pointers
used at p aliases with one of the pointers used at q.

We thus conduct the same analysis as before, but with an infinite lifetime to account for
far-ranging dependencies. We then use covu and covw as a proxy to measure whether assuming
the pointers independent was reasonable: a bad coverage would be a clear indication of non-
independent pointers treated as independent. A good coverage is not, formally, an indication of
the absence of non-independent pointers: the detected static dependencies may come of other
pointers at the same PC. We however believe it reasonable to consider it a good proxy for this
metric, as a single assembly line often reads a single value, and usually at most two. We do
not use the covp metric here, as we want to keep every detected dependency to detect possible
aliasing.

The results of this analysis are presented in Table 5.2. The very high coverage rate gives
us good confidence that our hypothesis of independent pointers is reasonable, at least within
the scope of Polybench, which we believe representative of scientific computation — one of the
prominent use-cases of tools such as code analyzers.

5.5.2 Enriching uiCA’s model

To estimate the real gain in performance debugging scenarios, we integrate staticdeps into
uiCA.

There is, however, a discrepancy between the two tools: while staticdeps works at the
assembly instruction level, uiCA works at the µOP level. In real hardware, dependencies indeed
occur between µOPs; however, we are not aware of the existence of a µOP-level semantic
description of the x86-64 ISA (which, by essence, would be declined for each specific processor,
as the ISA itself is not concerned with µOPs). This level of detail was thus unsuitable for the
staticdeps analysis.

84

Dataset Bencher Datapoints MAPE Median Q1 Q3 Kτ

Full uiCA 3500 29.59 % 18.26 % 7.11 % 52.99 % 0.58
+ staticdeps 3500 19.15 % 14.44 % 5.86 % 23.96 % 0.81

Pruned uiCA 2388 18.42 % 11.96 % 5.42 % 23.32 % 0.80
+ staticdeps 2388 18.77 % 12.18 % 5.31 % 23.55 % 0.80

Table 5.3 – Evaluation through CesASMe of the integration of staticdeps to uiCA

Figure 5.1 – Statistical distribution of relative errors of uiCA, with and without staticdeps
hints, with and without pruning latency bound through memory-carried dependencies rows

We bridge this gap in a conservative way: whenever two instructions i1, i2 are found to be
dependant, we add a dependency between each couple µ1 ∈ i1, µ2 ∈ i2. This approximation is
thus largely pessimistic, and should predict execution times biased towards a slower computation
kernel. A finer model, or a finer (conservative) filtering of which µOPs must be considered
dependent — eg. a memory dependency can only come from a memory-related µOP — may
enhance the accuracy of our integration.

We then evaluate our gains by running CesASMe’s harness as we did in chapter 4, running
both uiCA and uiCA + staticdeps, on two datasets: first, the full set of 3 500 binaries from
the previous chapter; then, the set of binaries pruned to exclude benchmarks heavily relying on
memory-carried dependencies introduced in subsection 4.6.4. If staticdeps is beneficial to uiCA,
we expect uiCA + staticdeps to yield significantly better results than uiCA alone on the first
dataset. On the second dataset, however, staticdeps should provide no significant contribution,
as the dataset was pruned to not exhibit significant memory-carried latency-boundness. We
present these results in Table 5.3, as well as the corresponding box-plots in Figure 5.1.

We deduce two things from this experiment.
First, the full dataset uiCA + staticdeps row is extremely close, on every metric, to the

pruned, uiCA-only row. On this basis, we argue that staticdeps’ addition to uiCA is very
conclusive: the hints provided by staticdeps are sufficient to make uiCA’s results as good on
the full dataset as they were before on a dataset pruned of precisely the kind of dependencies

85

Figure 5.2 – Statistical distribution of
staticdeps and depsim run times on
CesASMe’s kernels — log y scale

Figure 5.3 – Statistical distribution of
staticdeps’ speedup over depsim on
CesASMe’s kernels

Sequence Average Median Q1 Q3

Seq. (i) — depsim 18083 ms 17645 ms 17080 ms 18650 ms
Seq. (iii) — staticdeps (sum) 2307 ms 677 ms 557 ms 2700 ms
Seq. (ii) — staticdeps (single) 529 ms 545 ms 425 ms 588 ms

Seq. (iv) — speedup ×36.1 ×33.5 ×30.1 ×41.7

Table 5.4 – Statistical distribution of staticdeps and depsim run times and speedup on
CesASMe’s kernels

we aim to detect. Thus, at least on workloads similar to Polybench, staticdeps is able to
resolve the issue of memory-carried dependencies for uiCA’s throughput analysis.

Furthermore, uiCA and uiCA + staticdeps’ results on the pruned dataset are extremely
close. From this, we argue that staticdeps does not introduce false positives when no
dependency should be found; its addition to uiCA does not negatively impact its accuracy
whenever it is not relevant.

5.5.3 Analysis speed

The main advantage of a static analysis of dependencies over a dynamic one is its execution
time — we should expect from staticdeps an analysis time far lower than depsim’s.

To assess this, we evaluate on the same CesASMe kernels four data sequences:
(i) the execution time of depsim on each of CesASMe’s kernels;
(ii) the execution time of staticdeps on each of the basic blocks of each of CesASMe’s kernels;
(iii) for each of those kernels, the sum of the execution times of staticdeps on the kernel’s

constituting basic blocks;
(iv) for each basic block of each of CesASMe’s kernels, staticdeps’ speedup wrt. depsim, that

is, depsim’s execution time divided by staticdeps’.
As staticdeps is likely to be used at the scale of a basic block, we argue that the sequence (ii)

is more relevant than sequence (iii); however, the latter might be seen as more fair, as one run
of depsim yields dependencies of all of the kernel’s constituting basic blocks.

We plot the statistical distribution of these series in Figure 5.2 and Figure 5.3, and give
numerical data for some statistical indicators in Table 5.4. We note that staticdeps is 30

86

to 40 times faster than depsim. Furthermore, staticdeps is written in Python, more as a
proof-of-concept than as production-ready software; meanwhile, depsim is written in C on
top of valgrind, an efficient, production-ready software. We expect that with optimization
efforts, and a rewrite in a compiled language, the speedup would reach two to three orders of
magnitude.

Conclusion
In this chapter, we studied data dependencies within assembly kernels; and more specifically,

data dependencies occurring through memory accesses, which we call memory-carried depen-
dencies. CesASMe’s analysis showed in chapter 4 that this kind of dependency was responsible
for a significant portion of state-of-the-art analyzers’ prediction errors.

We introduce staticdeps, a heuristic approach based on random values as representatives
of abstract values. This approach is able to find data dependencies, including memory-carried
ones, loop-carried or not, leveraging semantics of the assembly code provided by valgrind’s
VEX. It is, however, still unable to find aliasing addresses whose source of aliasing is outside of
the studied block’s scope — and, as such, suffers from the lack of context pointed out in the
previous chapter.

Our evaluation of staticdeps against a dynamic analysis baseline, depsim, shows that
it finds between 95 % and 98 % of the existing dependencies, depending on the metric used,
giving us good confidence in the reliability of staticdeps. We further enrich uiCA with
staticdeps, and find that it performs on the full CesASMe’s dataset as well as uiCA alone on the
pruned dataset of CesASMe, removing memory-carried bottlenecks. From this, we conclude that
staticdeps is very successful at finding the data dependencies through memory that actually
matter from a performance analysis perspective. We also find that, despite being written in
pure Python, staticdeps is at least 30× faster than its C dynamic counterpart, depsim; as
such, we expect a compiled and optimized implementation of staticdeps to be two to three
orders of magnitude faster than depsim.

87

Chapter 6

Wrapping it all up

In chapter 2, we introduced Palmed, a framework to build a backend model. Following up
in chapter 3, we introduced a frontend model for the ARM-based Cortex A72 processor. Then,
in chapter 5, we further introduced a dependency detection model. Put together, these three
parts cover the major bottlenecks that a code analyzer must take into account.

Both the two first models — frontend and backend — already natively output a cycles
per iteration metric; we reduce our dependencies model to a cycles per iteration metric by
computing the critical path, described below.

To conclude this manuscript, we take a minimalist first approach at combining those three
models into a predictor, that we call A72 combined, by taking the maximal prediction among
the three models.

This method is clearly less precise than eg. uiCA or llvm-mca’s methods, which simulate
iterations of the kernel while accounting for each model. It however allows us to quickly and
easily evaluate an upper bound of the quality of our models: a more refined tool using our
models should obtain results at least as good as this method — but we could expect it to
perform significantly better.

6.1 Critical path model
To account for dependencies-induced bottlenecks, we compute the critical path along the

data dependencies graph of the microkernel; that is, the longest path in this graph weighted with
source instructions’ latencies. The length of this path sets a lower bound to the execution time,
as each source instruction must be issued and yield a result before the destination instruction
can be issued. This approach is also taken by Osaca [Lau+19].

In our case, we use instructions’ latencies inferred by Palmed and its backend Pipedream on
the A72.

So far, however, this method would fail to account for out-of-orderness: the latency of an
instruction is hidden by other computations, independent of the former one’s result. This
instruction-level parallelism is limited by the reorder buffer’s size.

We thus unroll the kernel as many times as fits in the reorder buffer — accounting for each
instruction’s µOP count, as we have a frontend model readily available —, and compute the
critical path on this unrolled version. Finally, the metric in cycles per iteration is obtained by
dividing this critical path’s length by the number of times we unrolled the kernel.

6.2 Evaluation
We evaluate A72 combined with CesASMe on the Raspberry Pi’s Cortex A72, using the

same set of benchmarks as in chapter 4 recompiled for AArch64. As most of the code analyzers

88

Bencher Datapoints Failures MAPE Median Q1 Q3 Kτ

(Count) (%) (%) (%) (%) (%)

A72 combined 1767 9 (0.51 %) 19.26 % 12.98 % 5.57 % 25.38 % 0.75
llvm-mca 1775 1 (0.06 %) 32.60 % 25.17 % 8.84 % 59.16 % 0.69
Osaca (backend) 1773 3 (0.17 %) 49.33 % 50.19 % 33.53 % 64.94 % 0.67
Osaca (crit. path) 1773 3 (0.17 %) 84.02 % 70.39 % 40.37 % 91.47 % 0.24

Table 6.1 – Evaluation through CesASMe of the A72 combined model

Figure 6.1 – Evaluation through CesASMe of the A72 combined model

89

we studied are unable to run on the A72, we are only able to compare A72 combined to the
baseline perf measure, llvm-mca and Osaca. We use llvm-mca at version 18.1.8 and Osaca at
version 0.5.0. We present the results in Table 6.1 and in Figure 6.1.

Our A72 combined model significantly outperforms llvm-mca, with a median error approxi-
mately half lower than llvm-mca’s and a third quartile level with its median. We expect that an
iterative model, such as llvm-mca or uiCA, based on our models’ data, would yet significantly
outperform A72 combined.

6.3 Towards a modular approach?
These models, however — frontend, backend and dependencies —, are only very loosely

dependent upon each other. The critical path model, for instance, requires the number of µOPs
in one instruction, while the frontend model is purely standalone. Should a standardized format
or API for these models emerge, swapping eg. our backend model for uops.info and running
our tool on Intel CPUs would be trivial. Yet better, one could build a “meta-model” relying
on these model components handling a logic way more performant than our simple max-based
model, on which anyone could hot-plug eg. a custom frontend model.

The usual approach of the domain to try a new idea, instead, is to create a full analyzer
implementing this idea, such as what we did with Palmed for backend models, or such as uiCA’s
implementation, focusing on frontend analysis.

In hindsight, we advocate for the emergence of such a modular code analyzer. It would
maybe not be as convenient or well-integrated as “production-ready” code analyzers, such as
llvm-mca — which is officially packaged for Debian. It could, however, greatly simplify the
academic process of trying a new idea on any of the three main models, by decorrelating them.
It would also ease the comparative evaluation of those ideas, while eliminating many of the
discrepancies between experimental setups that make an actual comparison difficult — the
reason that prompted us to make CesASMe in chapter 4. Indeed, with such a modular tool, it
would be easy to run the same experiment, in the same conditions, while only changing eg. the
frontend model but keeping a well-tried backend model.

90

Conclusion

During this manuscript, we explored the main bottlenecks that arise while analyzing the
low-level performance of a microkernel:

— frontend bottlenecks — the processor’s frontend is unable to saturate the backend with
instructions (chapter 2);

— backend bottlenecks — the backend is saturated with instructions from the frontend and
is unable to process them fast enough (chapter 3);

— dependencies bottlenecks — data dependencies between instructions prevent the backend
from being saturated; the latter is stalled awaiting previous results (chapter 5).

We also conducted in chapter 4 a systematic comparative study of a variety of state-of-the-art
code analyzers.

State-of-the-art code analyzers such as llvm-mca or uiCA already boast a good accuracy.
Both of these tools — and most of the others also — are however based on models obtained by
various degrees of manual investigation, and cannot be adapted without further manual effort
to future or uncharted microprocessors.

The field of microarchitectural models for code analysis emerged with fundamentally manual
methods, such as Agner Fog’s tables. Such tables, however, may now be produced in a more
automated way using uops.info — at least for certain microarchitectures; PMEvo pushes further
in this direction by automatically computing a frontend model from benchmarks — but still
has trouble scaling to a full instruction set. In its own way, Ithemal, a machine-learning based
approach, could also be considered automated — yet, it still requires a large training set for
the intended processor, which must be at least partially crafted manually. This trend towards
model automation seems only natural as new microarchitectures keep appearing, while new
ISAs such as ARM reach the supercomputer area.

We investigated this direction by exploring the three major bottlenecks mentioned earlier
in the perspective of providing fully-automated, benchmarks-based models for each of them.
Optimally, these models should be generated by simply executing a program on a machine
running on top of the targeted microarchitecture.

— We contributed to Palmed, a framework able to extract a port-mapping of a processor,
serving as a backend model.

— We manually extracted a frontend model for the Cortex A72 processor. We believe
that the foundation of our methodology works on most processors. To this end, we
provide a parametric model that may serve as a scaffold for future works willing to build
an automatic frontend model. Some parameters of this model must however still be
investigated, and their relative importance evaluated.

— We provided with staticdeps a method to to extract data dependencies between
instructions. It is able to detect loop-carried dependencies (dependencies that span
across multiple loop iterations), as well as memory-carried dependencies (dependencies
based on reading at a memory address written by another instruction). While the former
is widely implemented, the latter is, to the best of our knowledge, an original contribution.
We bundled this method in a processor-independent tool, based on semantics of the ISA

91

provided by valgrind, which supports a variety of ISAs.

We evaluated independently these three models, each of them providing satisfactory results:
Palmed is competitive with the state of the art, with the advantage of being automatic; our
frontend model significantly improves a backend model’s accuracy and our dependencies model
significantly improves uiCA’s results, while being consistent with a dynamic dependencies
analysis.

Finally, in the pre-conclusive chapter Wrapping it all up, we loosely combine our three pieces
of code analyzer model into a very simple full model, returning the maximal prediction from
the three major bottleneck analyzers. While this simplistic model would certainly benefit from
a more integrated approach, our results already significantly surpass llvm-mca, one of the very
few state-of-the-art tools on ARM processors.

We also identified multiple weaknesses in the current state of the art from our comparative
experiments with CesASMe.

First, none of the state-of-the-art tools have a good support for dependencies across memory.
Such dependencies were present in about a third of CesASMe’s benchmark set. While we built this
benchmark set aiming for representative data, there is no clear evidence that these dependencies
are so strongly present in the codes analyzed in real usecases. We however believe that such
cases regularly occur, and we also saw that the performance of code analyzers drops sharply in
their presence.

We also found the bottleneck prediction offered by some code analyzers still very uncertain.
In our experiments, the tools disagreed more often than not on the presence or absence of a
bottleneck, with no outstanding tool; we are thus unable to conclude on the relative performance
of tools on this aspect. On the other hand, sensitivity analysis, as implemented eg. by Gus,
seems a theoretically sound way to evaluate the presence or absence of a bottleneck in a
microkernel; it is, however, prohibitively slow for many usecases. In this respect, a study of
code analyzers’ predictions against results from sensitivity analysis would certainly bring more
conclusive results.

Finally, we observed on BHive’s results the effects of a lack of context for an analysis. BHive
measures a real execution, on real hardware, of a kernel; as such, it yields excellent accuracy in
many cases, with a median error of about 8%. Yet, it still lacks in accuracy in many other cases,
with its third quartile (23%) above uiCA or IACA’s median result (about 18%), and far-reaching
outliers bringing its mean error on-par with uiCA’s. Indeed, what precedes a loop nest and the
real values present in registers impact the performance of the loop nest. The effects can be of
fairly high level, such as pointer aliasing, leading to false positives or negatives in dependency
detections. They can also be of a microarchitectural level, such as the observable performance
loss of memory accesses — even with cache hits — when memory reads cross a cache line
boundary.

This lack of context incurs a significant loss of accuracy for static analyzers, as we saw in
subsection 4.6.2 that the same instruction, depending on its registers’ values, can be twice as
slow even without aliasing, or 19 times slower upon aliasing. With CesASMe, we sketch the
embryo of a solution, with a simple and fast pass of dynamic analysis through instrumentation,
gathering data for a subsequent pass of static analysis. Such a method might help recreating
the context needed for an accurate analysis.

92

Source code and data availability

The software written during my PhD is available under free software licenses — as publicly
funded works should be. The raw data resulting from experiments is typically available within
the relevant project’s repository.

Below is a list of the most important source code repositories. A longer list, including
dependencies and less important projects, can be found here 1.

— Palmed: here 2

— A72 frontend: here 3

— CesASMe: here 4

— staticdeps: here 5

— A72 combined: here 6

— This manuscript: here 7

1. https://gitlab.inria.fr/tbastian/phd-repo-links
2. https://gitlab.inria.fr/nderumig/palmed
3. https://gitlab.inria.fr/tbastian/a72_frontend
4. https://gitlab.inria.fr/CORSE/genbenchs
5. https://gitlab.inria.fr/tbastian/staticdeps
6. https://gitlab.inria.fr/CORSE/a72_combined
7. https://git.tobast.fr/tobast/phd-thesis

93

https://gitlab.inria.fr/tbastian/phd-repo-links
https://gitlab.inria.fr/nderumig/palmed
https://gitlab.inria.fr/tbastian/a72_frontend
https://gitlab.inria.fr/CORSE/genbenchs
https://gitlab.inria.fr/tbastian/staticdeps
https://gitlab.inria.fr/CORSE/a72_combined
https://git.tobast.fr/tobast/phd-thesis
https://gitlab.inria.fr/tbastian/phd-repo-links
https://gitlab.inria.fr/nderumig/palmed
https://gitlab.inria.fr/tbastian/a72_frontend
https://gitlab.inria.fr/CORSE/genbenchs
https://gitlab.inria.fr/tbastian/staticdeps
https://gitlab.inria.fr/CORSE/a72_combined
https://git.tobast.fr/tobast/phd-thesis

Bibliography

[15] Cortex-A72 Software Optimization Guide. ARM. Mar. 2015.
[23a] AMD64 Architecture Programmer’s Manual, volume 2. AMD. June 2023.
[23b] Intel® 64 and IA-32 Architectures Optimization Reference Manual Volume 1. Intel

Corporation. Sept. 2023.
[23c] Intel® 64 and IA-32 Architectures Software Developer’s Manual, volume 1. Intel

Corporation. June 2023.
[23d] Software Optimization Guide for the AMD Zen4 Microarchitecture. Publication

number 57647. Advanced Micro Devices (AMD). Jan. 2023.
[AR19] Andreas Abel and Jan Reineke. « uops.info: Characterizing Latency, Throughput,

and Port Usage of Instructions on Intel Microarchitectures ». In: ASPLOS. ASPLOS
’19. Providence, RI, USA: ACM, 2019, pp. 673–686. isbn: 978-1-4503-6240-5. doi:
10.1145/3297858.3304062. url: http://doi.acm.org/10.1145/3297858.
3304062.

[AR22] Andreas Abel and Jan Reineke. « UiCA: Accurate Throughput Prediction of Basic
Blocks on Recent Intel Microarchitectures ». In: Proceedings of the 36th ACM
International Conference on Supercomputing. ICS ’22. Virtual Event: Association
for Computing Machinery, 2022. isbn: 9781450392815. doi: 10.1145/3524059.
3532396. url: https://doi.org/10.1145/3524059.3532396.

[ARM] ARM. Cortex A-72. https://developer.arm.com/Processors/Cortex-A72.
[Bal+13] Daniel Balouek et al. « Adding Virtualization Capabilities to the Grid’5000

Testbed ». In: Cloud Computing and Services Science. Ed. by Ivan I. Ivanov,
Marten van Sinderen, Frank Leymann, and Tony Shan. Vol. 367. Communications
in Computer and Information Science. Springer International Publishing, 2013,
pp. 3–20. isbn: 978-3-319-04518-4. doi: 10.1007/978-3-319-04519-1_1.

[Bar20] Barcelona Supercomputing Center. Technical information on the MareNostrum 4
supercomputer’s ARM cluster. https://www.bsc.es/innovation-and-services/
technical-information-cte-arm. 2020.

[Bas23] Théophile Bastian. Rowmajor vs. colmajor experiments. https://gitlab.inria.
fr/tbastian/rowmajor-measure. Oct. 2023.

[Bia18] Andrea Di Biagio. [RFC] llvm-mca: a static performance analysis tool. https:
//lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html. Request
for comments on the llvm-dev mailing-list. Mar. 2018.

[BLK18] James Bucek, Klaus-Dieter Lange, and Jóakim von Kistowski. « SPEC CPU2017:
Next-Generation Compute Benchmark ». In: Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, ICPE 2018. Ed. by Katinka
Wolter, William J. Knottenbelt, André van Hoorn, and Manoj Nambiar. Berlin,
Germany: ACM, Apr. 2018, pp. 41–42. doi: 10.1145/3185768.3185771. url:
https://doi.org/10.1145/3185768.3185771.

94

https://doi.org/10.1145/3297858.3304062
http://doi.acm.org/10.1145/3297858.3304062
http://doi.acm.org/10.1145/3297858.3304062
https://doi.org/10.1145/3524059.3532396
https://doi.org/10.1145/3524059.3532396
https://doi.org/10.1145/3524059.3532396
https://developer.arm.com/Processors/Cortex-A72
https://doi.org/10.1007/978-3-319-04519-1_1
https://www.bsc.es/innovation-and-services/technical-information-cte-arm
https://www.bsc.es/innovation-and-services/technical-information-cte-arm
https://gitlab.inria.fr/tbastian/rowmajor-measure
https://gitlab.inria.fr/tbastian/rowmajor-measure
https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3185768.3185771

[Bon20] Uday Bondhugula. High Performance Code Generation in MLIR: An Early Case
Study with GEMM. 2020. arXiv: 2003.00532 [cs.PF].

[BRS07] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. PLuTo: A Practical and
Fully Automatic Polyhedral Parallelizer and Locality Optimizer. Tech. rep. OSU-
CISRC-10/07-TR70. The Ohio State University, Oct. 2007.

[Che+09] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. « Rodinia: A benchmark suite for heterogeneous
computing ». In: 2009 IEEE International Symposium on Workload Characterization
(IISWC). 2009, pp. 44–54. doi: 10.1109/IISWC.2009.5306797.

[Che+19] Yishen Chen, Ajay Brahmakshatriya, Charith Mendis, Alex Renda, Eric Atkinson,
Ondřej Sýkora, Saman Amarasinghe, and Michael Carbin. « BHive: A Benchmark
Suite and Measurement Framework for Validating x86-64 Basic Block Performance
Models ». In: 2019 IEEE International Symposium on Workload Characterization
(IISWC). 2019, pp. 167–177. doi: 10.1109/IISWC47752.2019.9042166.

[Com+95] TIS Committee et al. Tool interface standard (TIS) executable and linking format
(ELF) specification version 1.2. 1995.

[Con23] Contribution of Working Groups I, II and III to the Sixth Assessment Report of
the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J.
Romero (eds.)] IPCC, 2023: Climate Change 2023: Synthesis Report. Ed. by IPCC,
Geneva, Switzerland. doi: 10.59327/IPCC/AR6-9789291691647. 2023.

[Del19] Dell. Estimated product carbon footprint for PowerEdge C6420. Tech. rep. https:
//i.dell.com/sites/csdocuments/CorpComm_Docs/en/carbon-footprint-
poweredge-c6420.pdf. Dell, 2019.

[Der+22] Nicolas Derumigny, Théophile Bastian, Fabian Gruber, Guillaume Iooss, Christophe
Guillon, Louis-Noël Pouchet, and Fabrice Rastello. « PALMED: Throughput Char-
acterization for Superscalar Architectures ». In: 2022 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 2022, pp. 106–117. doi:
10.1109/CGO53902.2022.9741289.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. « Context-sensitive inter-
procedural points-to analysis in the presence of function pointers ». In: SIGPLAN
Not. 29.6 (June 1994), pp. 242–256. issn: 0362-1340. doi: 10.1145/773473.178264.
url: https://doi.org/10.1145/773473.178264.

[Ele] Electricity Maps data. https://app.electricitymaps.com/.
[ESE06] S. Eyerman, J.E. Smith, and L. Eeckhout. « Characterizing the branch misprediction

penalty ». In: 2006 IEEE International Symposium on Performance Analysis of
Systems and Software. 2006, pp. 48–58. doi: 10.1109/ISPASS.2006.1620789.

[Fog16] Agner Fog. Discussion on blogpost. https://www.agner.org/optimize/blog/
read.php?i=581. 2016.

[Fog20] Agner Fog. Instruction tables: Lists of instruction latencies, through-puts and
micro-operation breakdowns for Intel, AMD and VIA CPUs. 2020. url: http:
//www.agner.org/optimize/instruction_tables.pdf.

[Fuj23] Fujitsu Limited. Supercomputer Fugaku retains first place worldwide in HPCG and
Graph500 rankings. https://www.fujitsu.com/global/about/resources/news/
press-releases/2022/1115-01.html. May 2023.

[Goo] Google. EXEgesis. https://github.com/google/EXEgesis.

95

https://arxiv.org/abs/2003.00532
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC47752.2019.9042166
https://i.dell.com/sites/csdocuments/CorpComm_Docs/en/carbon-footprint-poweredge-c6420.pdf
https://i.dell.com/sites/csdocuments/CorpComm_Docs/en/carbon-footprint-poweredge-c6420.pdf
https://i.dell.com/sites/csdocuments/CorpComm_Docs/en/carbon-footprint-poweredge-c6420.pdf
https://doi.org/10.1109/CGO53902.2022.9741289
https://doi.org/10.1145/773473.178264
https://doi.org/10.1145/773473.178264
https://app.electricitymaps.com/
https://doi.org/10.1109/ISPASS.2006.1620789
https://www.agner.org/optimize/blog/read.php?i=581
https://www.agner.org/optimize/blog/read.php?i=581
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://www.fujitsu.com/global/about/resources/news/press-releases/2022/1115-01.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2022/1115-01.html
https://github.com/google/EXEgesis

[Gru19] Fabian Gruber. « Performance Debugging Toolbox for Binaries: Sensitivity Analysis
and Dependence Profiling ». 2019GREAM071. PhD thesis. Université Grenoble
Alpes, 2019. url: http://www.theses.fr/2019GREAM071/document.

[Gup+22] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David
Brooks, and Carole-Jean Wu. « ACT: Designing Sustainable Computer Systems
with an Architectural Carbon Modeling Tool ». In: Proceedings of the 49th Annual
International Symposium on Computer Architecture. ISCA ’22. New York, New York:
Association for Computing Machinery, 2022, pp. 784–799. isbn: 9781450386104. doi:
10.1145/3470496.3527408. url: https://doi.org/10.1145/3470496.3527408.

[Gur] LLC Gurobi Optimization. Gurobi Optimizer. https://www.gurobi.com.
[Haa23] Rene Haas. Together, we are building the future of computing, on Arm. https:

//www.arm.com/company/news/2023/09/building-the-future-of-computing-
on-arm. ARM, 2023.

[Inta] Intel. VTune profiler. https://www.intel.com/content/www/us/en/developer/
tools/oneapi/vtune-profiler.html.

[Intb] Intel Corporation. Intel Architecture Code Analyzer (IACA). https://software.
intel.com/en-us/articles/intel-architecture-code-analyzer/.

[Int03] Intel. oneAPI Math Kernel Library (oneMKL). https://www.intel.com/content/
www/us/en/developer/tools/oneapi/onemkl.html. 2003.

[Jev66] William Stanley Jevons. The coal question; an inquiry concerning the progress of
the nation and the probable exhaustion of our coal-mines. Macmillan, 1866.

[Kav07] Nikolaos Kavvadias. Hardware looping unit. 2007.
[Ken38] Maurice G Kendall. « A new measure of rank correlation ». In: Biometrika 30.1/2

(1938), pp. 81–93.
[Lau+18] Jan Laukemann, Julian Hammer, Johannes Hofmann, Georg Hager, and Gerhard

Wellein. « Automated Instruction Stream Throughput Prediction for Intel and AMD
Microarchitectures ». In: 2018 IEEE/ACM Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS). 2018, pp. 121–131.
doi: 10.1109/PMBS.2018.8641578.

[Lau+19] Jan Laukemann, Julian Hammer, Georg Hager, and Gerhard Wellein. « Automatic
Throughput and Critical Path Analysis of x86 and ARM Assembly Kernels ». In:
2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS). 2019, pp. 1–6. doi: 10.1109/PMBS49563.
2019.00006.

[Lin] Linux Kernel. perf: Linux profiling with performance counters. http://perf.wiki.
kernel.org/index.php/Main_Page.

[MAC18] Charith Mendis, Saman P. Amarasinghe, and Michael Carbin. « Ithemal: Accu-
rate, Portable and Fast Basic Block Throughput Estimation using Deep Neural
Networks ». In: CoRR abs/1808.07412 (2018). arXiv: 1808.07412. url: http:
//arxiv.org/abs/1808.07412.

[Man+23] Filippo Mantovani, Pablo Vizcaino, Fabio Banchelli, Marta Garcia-Gasulla, Roger
Ferrer, Georgios Ieronymakis, Nikolaos Dimou, Vassilis Papaefstathiou, and Jesus
Labarta. « Software Development Vehicles to enable extended and early co-design: a
RISC-V and HPC case of study ». In: International Conference on High Performance
Computing. Springer. 2023, pp. 526–537.

[Man23] Filippo Mantovani. Private communication during the ACACES summer school.
July 2023.

96

http://www.theses.fr/2019GREAM071/document
https://doi.org/10.1145/3470496.3527408
https://doi.org/10.1145/3470496.3527408
https://www.gurobi.com
https://www.arm.com/company/news/2023/09/building-the-future-of-computing-on-arm
https://www.arm.com/company/news/2023/09/building-the-future-of-computing-on-arm
https://www.arm.com/company/news/2023/09/building-the-future-of-computing-on-arm
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://doi.org/10.1109/PMBS.2018.8641578
https://doi.org/10.1109/PMBS49563.2019.00006
https://doi.org/10.1109/PMBS49563.2019.00006
http://perf.wiki.kernel.org/index.php/Main_Page
http://perf.wiki.kernel.org/index.php/Main_Page
https://arxiv.org/abs/1808.07412
http://arxiv.org/abs/1808.07412
http://arxiv.org/abs/1808.07412

[Mat21] Satoshi Matsuoka. « Fugaku and A64FX: the First Exascale Supercomputer and
its Innovative Arm CPU ». In: 2021 Symposium on VLSI Circuits. 2021, pp. 1–3.
doi: 10.23919/VLSICircuits52068.2021.9492415.

[Muc+99] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. « PAPI: A
portable interface to hardware performance counters ». In: Proceedings of the
department of defense HPCMP users group conference. Vol. 710. 1999.

[NS03] Nicholas Nethercote and Julian Seward. « Valgrind: A Program Supervision Frame-
work ». In: Electr. Notes Theor. Comput. Sci. 89.2 (2003), pp. 44–66.

[Pou09] Louis-Noël Pouchet. PoCC, the Polyhedral Compiler Collection. https://www.cs.
colostate.edu/~pouchet/software/pocc/. 2009.

[PY16] Louis-Noël Pouchet and Tomofumi Yuki. PolyBench/C: The polyhedral benchmark
suite, version 4.2. http://polybench.sf.net. 2016.

[QC] Nguyen Anh Quynh and the Capstone collaborators. Capstone engine. https:
//www.capstone-engine.org/.

[QEM] QEMU. QEMU: the FAST! processor emulator. https://www.qemu.org.
[Ren+21] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan, Dean M.

Tullsen, and Ashish Venkat. « I See Dead µops: Leaking Secrets via Intel/AMD
Micro-Op Caches ». In: 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). 2021, pp. 361–374. doi: 10.1109/ISCA52012.
2021.00036.

[RH20] Fabian Ritter and Sebastian Hack. « PMEvo: portable inference of port mappings
for out-of-order processors by evolutionary optimization ». In: Proceedings of the
41st ACM SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2020. Ed. by Alastair F. Donaldson and Emina Torlak.
London, UK: ACM, June 2020, pp. 608–622. doi: 10.1145/3385412.3385995.
url: https://doi.org/10.1145/3385412.3385995.

[RH22] Fabian Ritter and Sebastian Hack. « AnICA: Analyzing Inconsistencies in Microar-
chitectural Code Analyzers ». In: Proc. ACM Program. Lang. 6.OOPSLA2 (Oct.
2022). doi: 10.1145/3563288. url: https://doi.org/10.1145/3563288.

[Rou87] Peter J. Rousseeuw. « Silhouettes: A graphical aid to the interpretation and valida-
tion of cluster analysis ». In: Journal of Computational and Applied Mathematics
20 (1987), pp. 53–65. issn: 0377-0427. doi: https://doi.org/10.1016/0377-
0427(87)90125-7. url: https://www.sciencedirect.com/science/article/
pii/0377042787901257.

[SL] Sony Corporation and LLVM Project. LLVM Machine Code Analyzer. https:
//llvm.org/docs/CommandGuide/llvm-mca.html.

[SRO04] Ravi P Singh, Charles P Roth, and Gregory A Overkamp. Hardware loops. US
Patent 6,748,523. June 2004.

[TJ01] D. Talla and L.K. John. « Cost-effective hardware acceleration of multimedia
applications ». In: Proceedings 2001 IEEE International Conference on Computer
Design: VLSI in Computers and Processors. ICCD 2001. 2001, pp. 415–424. doi:
10.1109/ICCD.2001.955060.

[Val23] Valgrind developpers. Valgrind — supported platforms. https://valgrind.org/
info/platforms.html. Sept. 2023.

97

https://doi.org/10.23919/VLSICircuits52068.2021.9492415
https://www.cs.colostate.edu/~pouchet/software/pocc/
https://www.cs.colostate.edu/~pouchet/software/pocc/
http://polybench.sf.net
https://www.capstone-engine.org/
https://www.capstone-engine.org/
https://www.qemu.org
https://doi.org/10.1109/ISCA52012.2021.00036
https://doi.org/10.1109/ISCA52012.2021.00036
https://doi.org/10.1145/3385412.3385995
https://doi.org/10.1145/3385412.3385995
https://doi.org/10.1145/3563288
https://doi.org/10.1145/3563288
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://doi.org/10.1109/ICCD.2001.955060
https://valgrind.org/info/platforms.html
https://valgrind.org/info/platforms.html

[Vis+21] A V Vishnekov, E M Ivanova, N A Stepanov, and N D Shaimov. « A Simulation
Model for Macro- and Micro-Fusion Algorithms in the CPU Core ». In: Journal
of Physics: Conference Series 1740.1 (Jan. 2021), p. 012053. doi: 10.1088/1742-
6596/1740/1/012053. url: https://dx.doi.org/10.1088/1742-6596/1740/1/
012053.

[Vol22] Tanya Volnina. « Enable AVX-512 instructions in Valgrind ». In: FOSDEM, 2022.
url: https://fosdem.org/2022/schedule/event/valgrind_avx512/.

[Wan+13] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. « AUGEM: Automati-
cally Generate High Performance Dense Linear Algebra Kernels on X86 CPUs ».
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. SC ’13. Denver, Colorado: Association for Com-
puting Machinery, 2013. isbn: 9781450323789. doi: 10.1145/2503210.2503219.
url: https://doi.org/10.1145/2503210.2503219.

[War63] Joe H. Ward. « Hierarchical Grouping to Optimize an Objective Function ». In:
Journal of the American Statistical Association 58.301 (1963), pp. 236–244. issn:
01621459. url: http://www.jstor.org/stable/2282967 (visited on 09/15/2023).

[Wat+11] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic. « The
risc-v instruction set manual, volume i: Base user-level isa ». In: EECS Department,
UC Berkeley, Tech. Rep. UCB/EECS-2011-62 116 (2011), pp. 1–32.

[Wik21] WikiChip. Intel Details Golden Cove: Next-Generation Big Core For Client and
Server SoCs. https://fuse.wikichip.org/news/6111/intel-details-golden-
cove-next-generation-big-core-for-client-and-server-socs/. Aug. 2021.

[Xia] Zhang Xianyi. OpenBLAS: an optimized BLAS library. https://www.qemu.org.
[YM16] Richard York and Julius Alexander McGee. « Understanding the Jevons paradox ».

In: Environmental Sociology 2.1 (2016), pp. 77–87. doi: 10.1080/23251042.2015.
1106060.

98

https://doi.org/10.1088/1742-6596/1740/1/012053
https://doi.org/10.1088/1742-6596/1740/1/012053
https://dx.doi.org/10.1088/1742-6596/1740/1/012053
https://dx.doi.org/10.1088/1742-6596/1740/1/012053
https://fosdem.org/2022/schedule/event/valgrind_avx512/
https://doi.org/10.1145/2503210.2503219
https://doi.org/10.1145/2503210.2503219
http://www.jstor.org/stable/2282967
https://fuse.wikichip.org/news/6111/intel-details-golden-cove-next-generation-big-core-for-client-and-server-socs/
https://fuse.wikichip.org/news/6111/intel-details-golden-cove-next-generation-big-core-for-client-and-server-socs/
https://www.qemu.org
https://doi.org/10.1080/23251042.2015.1106060
https://doi.org/10.1080/23251042.2015.1106060

	Notations
	Introduction
	Foundations
	A dive into processors' microarchitecture
	High-level abstraction of processors
	Microarchitectures

	Kernel optimization and code analyzers
	Code analyzers
	Examples with llvm-mca
	Definitions

	State of the art
	Manufacturer-sourced data
	Third-party instruction data
	Code analyzers and their models

	Palmed: automatically modelling the backend
	Resource models
	Usual representation: tripartite disjunctive graph
	Dual representation: conjunctive resource mapping

	Palmed design
	Measuring a kernel's throughput: Pipedream
	Finding basic blocks to evaluate Palmed
	Benchmark suites
	Manually extracting basic blocks
	Automating basic block extraction

	Evaluating Palmed
	Evaluation harness
	Metrics extracted
	Results

	Other contributions

	Beyond ports: manually modelling the A72 frontend
	Necessity to go beyond ports
	The Cortex A72 CPU
	Manually modelling the A72 frontend
	Finding micro-operation count for each instruction
	Bubbles in the pipeline

	Evaluation on Palmed
	A parametric model for future works of automatic frontend model generation

	A more systematic approach to throughput prediction performance analysis: CesASMe
	Re-defining the execution time of a kernel
	Related works
	Generating microbenchmarks
	Benchmark suite
	C-to-C loop nest optimizers
	Constraining utility
	C-to-binary compiler

	Benchmarking harness
	Basic block extraction
	Throughput predictions and measures
	Prediction lifting and filtering

	Experimental setup and evaluation
	Experimental environment
	Comparability of the results
	Relevance and representativity (bottleneck analysis)
	Carbon footprint

	Results analysis
	Throughput results
	Understanding BHive's results
	Bottleneck prediction
	Impact of dependency-boundness

	Static extraction of memory-carried dependencies
	Types of dependencies
	A baseline: dynamic dependencies detection with valgrind
	Valgrind
	Depsim

	Static dependencies detection
	Far-reaching dependencies do not impact performance

	Staticdeps
	The staticdeps heuristic
	Practical implementation
	Limitations

	Evaluation
	Comparison to depsim results
	Enriching uiCA's model
	Analysis speed

	Wrapping it all up
	Critical path model
	Evaluation
	Towards a modular approach?

	Conclusion
	Bibliography

