
Growing the DWARF tougher:
synthesis, validation and compilation

Théophile Bastian

Based on work done with
Francesco Zappa Nardelli, Stephen Kell, Simon Ser

ENS Paris, INRIA

Slides: https://tobast.fr/files/oracle18.pdf

https://tobast.fr/files/oracle18.pdf

1 DWARF and stack unwinding data

2 Unwinding data validation

3 Unwinding data synthesis from binaries

4 Unwinding data compilation

DWARF and stack unwinding data

1/38 I – DWARF and stack unwinding data

We often use stack unwinding!

Program received signal SIGSEGV.
0x54625 in fct_b at segfault.c:5
5 printf ("%l\n", *b);

(gdb) backtrace
#0 0x54625 in fct_b at segfault.c:5
#1 0x54663 in fct_a at segfault.c:10
#2 0x54674 in main at segfault.c:14

(gdb) frame 1
#1 0x54663 in fct_a at segfault.c:10
10 fct_b((int*) a);

(gdb) print a
$1 = 84

How does it work?!

2/38 I – DWARF and stack unwinding data

We often use stack unwinding!

Program received signal SIGSEGV.
0x54625 in fct_b at segfault.c:5
5 printf ("%l\n", *b);

(gdb) backtrace
#0 0x54625 in fct_b at segfault.c:5
#1 0x54663 in fct_a at segfault.c:10
#2 0x54674 in main at segfault.c:14

(gdb) frame 1
#1 0x54663 in fct_a at segfault.c:10
10 fct_b((int*) a);

(gdb) print a
$1 = 84

How does it work?!

2/38 I – DWARF and stack unwinding data

We often use stack unwinding!

Program received signal SIGSEGV.
0x54625 in fct_b at segfault.c:5
5 printf ("%l\n", *b);

(gdb) backtrace
#0 0x54625 in fct_b at segfault.c:5
#1 0x54663 in fct_a at segfault.c:10
#2 0x54674 in main at segfault.c:14

(gdb) frame 1
#1 0x54663 in fct_a at segfault.c:10
10 fct_b((int*) a);

(gdb) print a
$1 = 84

How does it work?!

2/38 I – DWARF and stack unwinding data

We often use stack unwinding!

Program received signal SIGSEGV.
0x54625 in fct_b at segfault.c:5
5 printf ("%l\n", *b);

(gdb) backtrace
#0 0x54625 in fct_b at segfault.c:5
#1 0x54663 in fct_a at segfault.c:10
#2 0x54674 in main at segfault.c:14

(gdb) frame 1
#1 0x54663 in fct_a at segfault.c:10
10 fct_b((int*) a);

(gdb) print a
$1 = 84

How does it work?!

2/38 I – DWARF and stack unwinding data

We often use stack unwinding!

Program received signal SIGSEGV.
0x54625 in fct_b at segfault.c:5
5 printf ("%l\n", *b);

(gdb) backtrace
#0 0x54625 in fct_b at segfault.c:5
#1 0x54663 in fct_a at segfault.c:10
#2 0x54674 in main at segfault.c:14

(gdb) frame 1
#1 0x54663 in fct_a at segfault.c:10
10 fct_b((int*) a);

(gdb) print a
$1 = 84

How does it work?!

2/38 I – DWARF and stack unwinding data

We often use stack unwinding!

Program received signal SIGSEGV.
0x54625 in fct_b at segfault.c:5
5 printf ("%l\n", *b);

(gdb) backtrace
#0 0x54625 in fct_b at segfault.c:5
#1 0x54663 in fct_a at segfault.c:10
#2 0x54674 in main at segfault.c:14

(gdb) frame 1
#1 0x54663 in fct_a at segfault.c:10
10 fct_b((int*) a);

(gdb) print a
$1 = 84

How does it work?!

2/38 I – DWARF and stack unwinding data

Call stack and registers

How do we get the
grandparent RA?

Isn’t it as trivial as pop()?

We only have %rsp and %rip.

3/38 I – DWARF and stack unwinding data

Call stack and registers

How do we get the
grandparent RA?

Isn’t it as trivial as pop()?

We only have %rsp and %rip.

3/38 I – DWARF and stack unwinding data

DWARF unwinding data

LOC CFA rbx rbp r12 r13 r14 r15 ra
0084950 rsp+8 u u u u u u c-8
0084952 rsp+16 u u u u u c-16 c-8
0084954 rsp+24 u u u u c-24 c-16 c-8
0084956 rsp+32 u u u c-32 c-24 c-16 c-8
0084958 rsp+40 u u c-40 c-32 c-24 c-16 c-8
0084959 rsp+48 u c-48 c-40 c-32 c-24 c-16 c-8
008495a rsp+56 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084962 rsp+64 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a19 rsp+56 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a1d rsp+48 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a1e rsp+40 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a20 rsp+32 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a22 rsp+24 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a24 rsp+16 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a26 rsp+8 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a30 rsp+64 c-56 c-48 c-40 c-32 c-24 c-16 c-8

4/38 I – DWARF and stack unwinding data

DWARF unwinding data

LOC CFA rbx rbp r12 r13 r14 r15 ra
0084950 rsp+8 u u u u u u c-8
0084952 rsp+16 u u u u u c-16 c-8
0084954 rsp+24 u u u u c-24 c-16 c-8
0084956 rsp+32 u u u c-32 c-24 c-16 c-8
0084958 rsp+40 u u c-40 c-32 c-24 c-16 c-8
0084959 rsp+48 u c-48 c-40 c-32 c-24 c-16 c-8
008495a rsp+56 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084962 rsp+64 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a19 rsp+56 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a1d rsp+48 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a1e rsp+40 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a20 rsp+32 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a22 rsp+24 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a24 rsp+16 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a26 rsp+8 c-56 c-48 c-40 c-32 c-24 c-16 c-8
0084a30 rsp+64 c-56 c-48 c-40 c-32 c-24 c-16 c-8

4/38 I – DWARF and stack unwinding data

The real DWARF

00009 b30 48 009b34 FDE cie =0000 pc =0084950..0084 b37
DW_CFA_advance_loc: 2 to 0000000000084952
DW_CFA_def_cfa_offset: 16
DW_CFA_offset: r15 (r15) at cfa -16
DW_CFA_advance_loc: 2 to 0000000000084954
DW_CFA_def_cfa_offset: 24
DW_CFA_offset: r14 (r14) at cfa -24
DW_CFA_advance_loc: 2 to 0000000000084956
DW_CFA_def_cfa_offset: 32
DW_CFA_offset: r13 (r13) at cfa -32
DW_CFA_advance_loc: 2 to 0000000000084958
DW_CFA_def_cfa_offset: 40
DW_CFA_offset: r12 (r12) at cfa -40
DW_CFA_advance_loc: 1 to 0000000000084959
[...]

−→ constructed on-demand by a Turing-complete bytecode!

Complex
& slow!

5/38 I – DWARF and stack unwinding data

The real DWARF

00009 b30 48 009b34 FDE cie =0000 pc =0084950..0084 b37
DW_CFA_advance_loc: 2 to 0000000000084952
DW_CFA_def_cfa_offset: 16
DW_CFA_offset: r15 (r15) at cfa -16
DW_CFA_advance_loc: 2 to 0000000000084954
DW_CFA_def_cfa_offset: 24
DW_CFA_offset: r14 (r14) at cfa -24
DW_CFA_advance_loc: 2 to 0000000000084956
DW_CFA_def_cfa_offset: 32
DW_CFA_offset: r13 (r13) at cfa -32
DW_CFA_advance_loc: 2 to 0000000000084958
DW_CFA_def_cfa_offset: 40
DW_CFA_offset: r12 (r12) at cfa -40
DW_CFA_advance_loc: 1 to 0000000000084959
[...]

−→ constructed on-demand by a Turing-complete bytecode!

Complex
& slow!

5/38 I – DWARF and stack unwinding data

Why does slow matter?

After all, we’re talking about debugging procedures ran by a
human being (slower than the machine).
. . . or are we?

No!

Pretty much any program analysis tool
Profiling with polling profilers
Exception handling in C++

Debug data is not only for debugging

6/38 I – DWARF and stack unwinding data

Why does slow matter?

After all, we’re talking about debugging procedures ran by a
human being (slower than the machine).
. . . or are we?

No!

Pretty much any program analysis tool
Profiling with polling profilers
Exception handling in C++

Debug data is not only for debugging

6/38 I – DWARF and stack unwinding data

Why does slow matter?

After all, we’re talking about debugging procedures ran by a
human being (slower than the machine).
. . . or are we?

No!

Pretty much any program analysis tool

Profiling with polling profilers
Exception handling in C++

Debug data is not only for debugging

6/38 I – DWARF and stack unwinding data

Why does slow matter?

After all, we’re talking about debugging procedures ran by a
human being (slower than the machine).
. . . or are we?

No!

Pretty much any program analysis tool
Profiling with polling profilers

Exception handling in C++

Debug data is not only for debugging

6/38 I – DWARF and stack unwinding data

Why does slow matter?

After all, we’re talking about debugging procedures ran by a
human being (slower than the machine).
. . . or are we?

No!

Pretty much any program analysis tool
Profiling with polling profilers
Exception handling in C++

Debug data is not only for debugging

6/38 I – DWARF and stack unwinding data

Difficult to generate

Major concern with DWARF: it is difficult to generate (correctly).

Hard to generate: each compiler pass must keep it in sync
Most of it is seldom used (eg. unwinding data of dusty code),
and thus seldom tested

Yields to
unreliable DWARF: can cause headaches when debugging
or not generated at all (eg. OCaml until recently)

 Complex, buggy, untested

7/38 I – DWARF and stack unwinding data

A debugging hell: Linux kernel

“Sorry, but last time was too f. . . painful. The whole (and only)
point of unwinders is to make debugging easy when a bug occurs.
But the dwarf unwinder had bugs itself, or our dwarf information
had bugs, and in either case it actually turned several trivial bugs
into a total undebuggable hell.”

— Linus Torvalds, Kernel mailing list, 2012

This is where we still are!

8/38 I – DWARF and stack unwinding data

A debugging hell: Linux kernel

“Sorry, but last time was too f. . . painful. The whole (and only)
point of unwinders is to make debugging easy when a bug occurs.
But the dwarf unwinder had bugs itself, or our dwarf information
had bugs, and in either case it actually turned several trivial bugs
into a total undebuggable hell.”

— Linus Torvalds, Kernel mailing list, 2012

This is where we still are!

8/38 I – DWARF and stack unwinding data

Unwinding data validation

9/38 II – Unwinding data validation

Validating an example

<foo>:
push %r15
push %r14
mov $0x3,%eax
push %r13
push %r12
push %rbp
push %rbx
sub $0x68,%rsp
cmp $0x1,%edi
add $0x68,%rsp
pop %rbx
pop %rbp

10/38 II – Unwinding data validation

Validating an example

<foo>: CFA ra
push %r15 rsp+8 c-8
push %r14 rsp+16 c-8
mov $0x3,%eax rsp+24 c-8
push %r13 rsp+24 c-8
push %r12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68,%rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8
add $0x68,%rsp rsp+160 c-8
pop %rbx rsp+56 c-8
pop %rbp rsp+48 c-8

10/38 II – Unwinding data validation

Validating an example

<foo>: CFA ra
push %r15 rsp+8 c-8
push %r14 rsp+16 c-8
mov $0x3,%eax rsp+24 c-8
push %r13 rsp+24 c-8
push %r12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68,%rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8
add $0x68,%rsp rsp+160 c-8
pop %rbx rsp+56 c-8
pop %rbp rsp+48 c-8

Upon function call, ra = *(%rsp) (ABI)

10/38 II – Unwinding data validation

Validating an example

<foo>: CFA ra
push %r15 rsp+8 c-8
push %r14 rsp+16 c-8
mov $0x3,%eax rsp+24 c-8
push %r13 rsp+24 c-8
push %r12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68,%rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8
add $0x68,%rsp rsp+160 c-8
pop %rbx rsp+56 c-8
pop %rbp rsp+48 c-8

push decreases %rsp by 8: ra = *(%rsp + 8)

10/38 II – Unwinding data validation

Validating an example

<foo>: CFA ra
push %r15 rsp+8 c-8
push %r14 rsp+16 c-8
mov $0x3,%eax rsp+24 c-8
push %r13 rsp+24 c-8
push %r12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68,%rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8
add $0x68,%rsp rsp+160 c-8
pop %rbx rsp+56 c-8
pop %rbp rsp+48 c-8

and again: ra = *(%rsp + 16)

10/38 II – Unwinding data validation

Validating an example

<foo>: CFA ra
push %r15 rsp+8 c-8
push %r14 rsp+16 c-8
mov $0x3,%eax rsp+24 c-8
push %r13 rsp+24 c-8
push %r12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68,%rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8
add $0x68,%rsp rsp+160 c-8
pop %rbx rsp+56 c-8
pop %rbp rsp+48 c-8

This mov leaves %rsp untouched: ra = *(%rsp + 16)

10/38 II – Unwinding data validation

Validating an example

<foo>: CFA ra
push %r15 rsp+8 c-8
push %r14 rsp+16 c-8
mov $0x3,%eax rsp+24 c-8
push %r13 rsp+24 c-8
push %r12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68,%rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8
add $0x68,%rsp rsp+160 c-8
pop %rbx rsp+56 c-8
pop %rbp rsp+48 c-8

The unwinding table can actually be seen as
an abstract interpretation of the code. . .

10/38 II – Unwinding data validation

Validating an example

<foo>: CFA ra
push %r15 rsp+8 c-8
push %r14 rsp+16 c-8
mov $0x3,%eax rsp+24 c-8
push %r13 rsp+24 c-8
push %r12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68,%rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8
add $0x68,%rsp rsp+160 c-8
pop %rbx rsp+56 c-8
pop %rbp rsp+48 c-8

. . . and thus, for a given run, be re-computed for
verification

10/38 II – Unwinding data validation

Validating an example

<foo>: CFA ra
push %r15 rsp+8 c-8
push %r14 rsp+16 c-8
mov $0x3,%eax rsp+24 c-8
push %r13 rsp+24 c-8
push %r12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68,%rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8

If, within an execution,
ra = *(0xFFFF1098)

%rsp = 0xFFFF1000

We can evaluate both expressions and compare
10/38 II – Unwinding data validation

Dynamic validation

Abstract state
Stack of actual addresses where return addresses are stored

Abstract instruction semantics
call push %rsp on the stack
ret pop from the stack

Validation of each instruction
Evaluate the return address provided by DWARF
Compare it with the value at the top of the stack

11/38 II – Unwinding data validation

Dynamic validation

Abstract state
Stack of actual addresses where return addresses are stored

Abstract instruction semantics
call push %rsp on the stack
ret pop from the stack

Validation of each instruction
Evaluate the return address provided by DWARF
Compare it with the value at the top of the stack

11/38 II – Unwinding data validation

Dynamic validation

Abstract state
Stack of actual addresses where return addresses are stored

Abstract instruction semantics
call push %rsp on the stack
ret pop from the stack

Validation of each instruction
Evaluate the return address provided by DWARF
Compare it with the value at the top of the stack

11/38 II – Unwinding data validation

In practice: eh_frame_check

Strategy implemented and working: eh_frame_check

gdb allows for Python instrumentation

Parse ELF and DWARF data (pyelftools)
Run the binary inside gdb
Pause at each (assembly) step
Jointly evaluate DWARF data and the abstract stack
Report upon error

Works, but. . . Python is slow!
A few thousand of ASM instructions/second (good enough)

12/38 II – Unwinding data validation

In practice: eh_frame_check

Strategy implemented and working: eh_frame_check

gdb allows for Python instrumentation

Parse ELF and DWARF data (pyelftools)
Run the binary inside gdb
Pause at each (assembly) step
Jointly evaluate DWARF data and the abstract stack
Report upon error

Works, but. . . Python is slow!
A few thousand of ASM instructions/second (good enough)

12/38 II – Unwinding data validation

A real bug!

1 short a,b,g;
2 long c;
3 char d;
4 int e, f;
5

6 void main() {
7 for(; f; f++)
8 for(; e; e++)
9 for(; c; c++) {

10 g = a % b;
11 for(; d <= 1; d++);
12 }
13 }

CSmith
+ Creduce
+ eh_frame_check

 LLVM (3.8) bug!

13/38 II – Unwinding data validation

A real bug!

Abstract state [0xFFFF1000]

%rsp

<foo>: CFA ra
4004e0 push %rbx rsp+8 c-8

rsp+16 c-8
[. . .]

40061d pop %rbx rsp+16 c-8
40061e retq rsp+16 c-8

 LLVM bug #13161

14/38 II – Unwinding data validation

A real bug!

Abstract state [0xFFFF1000]

%rsp

<foo>: CFA ra
4004e0 push %rbx rsp+8 c-8

rsp+16 c-8
[. . .]

40061d pop %rbx rsp+16 c-8
40061e retq rsp+16 c-8

 LLVM bug #13161

14/38 II – Unwinding data validation

A real bug!

Abstract state [0xFFFF1000]

%rsp 0xFFFF1000

<foo>: CFA ra
4004e0 push %rbx rsp+8 c-8

rsp+16 c-8
[. . .]

40061d pop %rbx rsp+16 c-8
40061e retq rsp+16 c-8

 LLVM bug #13161

14/38 II – Unwinding data validation

A real bug!

Abstract state [0xFFFF1000]

%rsp 0xFFFF1000 4
<foo>: CFA ra
4004e0 push %rbx rsp+8 c-8

rsp+16 c-8
[. . .]

40061d pop %rbx rsp+16 c-8
40061e retq rsp+16 c-8

 LLVM bug #13161

14/38 II – Unwinding data validation

A real bug!

Abstract state [0xFFFF1000]

%rsp 0xFFFF0FF8

<foo>: CFA ra
4004e0 push %rbx rsp+8 c-8

rsp+16 c-8
[. . .]

40061d pop %rbx rsp+16 c-8
40061e retq rsp+16 c-8

 LLVM bug #13161

14/38 II – Unwinding data validation

A real bug!

Abstract state [0xFFFF1000]

%rsp 0xFFFF0FF8 4
<foo>: CFA ra
4004e0 push %rbx rsp+8 c-8

rsp+16 c-8
[. . .]

40061d pop %rbx rsp+16 c-8
40061e retq rsp+16 c-8

 LLVM bug #13161

14/38 II – Unwinding data validation

A real bug!

Abstract state [0xFFFF1000]

%rsp 0xFFFF0FF8

<foo>: CFA ra
4004e0 push %rbx rsp+8 c-8

rsp+16 c-8
[. . .]

40061d pop %rbx rsp+16 c-8
40061e retq rsp+16 c-8

 LLVM bug #13161

14/38 II – Unwinding data validation

A real bug!

Abstract state [0xFFFF1000]

%rsp 0xFFFF0FF8 4
<foo>: CFA ra
4004e0 push %rbx rsp+8 c-8

rsp+16 c-8
[. . .]

40061d pop %rbx rsp+16 c-8
40061e retq rsp+16 c-8

 LLVM bug #13161

14/38 II – Unwinding data validation

A real bug!

Abstract state [0xFFFF1000]

%rsp 0xFFFF1000

<foo>: CFA ra
4004e0 push %rbx rsp+8 c-8

rsp+16 c-8
[. . .]

40061d pop %rbx rsp+16 c-8
40061e retq rsp+16 c-8

 LLVM bug #13161

14/38 II – Unwinding data validation

A real bug!

Abstract state [0xFFFF1000]

%rsp 0xFFFF1000 8
<foo>: CFA ra
4004e0 push %rbx rsp+8 c-8

rsp+16 c-8
[. . .]

40061d pop %rbx rsp+16 c-8
40061e retq rsp+16 c-8

 LLVM bug #13161

14/38 II – Unwinding data validation

A real bug!

Abstract state [0xFFFF1000]

%rsp 0xFFFF1000 8
<foo>: CFA ra
4004e0 push %rbx rsp+8 c-8

rsp+16 c-8
[. . .]

40061d pop %rbx rsp+16 c-8
40061e retq rsp+16 c-8

 LLVM bug #13161

14/38 II – Unwinding data validation

What for, in the end?

We can find bugs in compilers

We can validate DWARF tables!
. . . well, only along one execution path. . .
but mostly we are close to a working algorithm to synthesize
unwinding data from binaries!

15/38 II – Unwinding data validation

What for, in the end?

We can find bugs in compilers
We can validate DWARF tables!

. . . well, only along one execution path. . .
but mostly we are close to a working algorithm to synthesize
unwinding data from binaries!

15/38 II – Unwinding data validation

What for, in the end?

We can find bugs in compilers
We can validate DWARF tables!
. . . well, only along one execution path. . .

but mostly we are close to a working algorithm to synthesize
unwinding data from binaries!

15/38 II – Unwinding data validation

What for, in the end?

We can find bugs in compilers
We can validate DWARF tables!
. . . well, only along one execution path. . .
but mostly we are close to a working algorithm to synthesize
unwinding data from binaries!

15/38 II – Unwinding data validation

Unwinding data synthesis from binaries

16/38 III – Unwinding data synthesis from binaries

Why would synthesis be useful?

As said earlier, DWARF is complex
Some compilers do not generate it: hard to debug & profile.
Think of JIT-compiled assembly (eg. JVM)
. . . or even hand-written inlined assembly!

Painful enough to write for not bothering with DWARF
May not even be known by the programmer, breaks gdb
May be wrong (remember Linus!)

17/38 III – Unwinding data synthesis from binaries

Why would synthesis be useful?

As said earlier, DWARF is complex

Some compilers do not generate it: hard to debug & profile.
Think of JIT-compiled assembly (eg. JVM)
. . . or even hand-written inlined assembly!

Painful enough to write for not bothering with DWARF
May not even be known by the programmer, breaks gdb
May be wrong (remember Linus!)

17/38 III – Unwinding data synthesis from binaries

Why would synthesis be useful?

As said earlier, DWARF is complex
Some compilers do not generate it: hard to debug & profile.

Think of JIT-compiled assembly (eg. JVM)
. . . or even hand-written inlined assembly!

Painful enough to write for not bothering with DWARF
May not even be known by the programmer, breaks gdb
May be wrong (remember Linus!)

17/38 III – Unwinding data synthesis from binaries

Why would synthesis be useful?

As said earlier, DWARF is complex
Some compilers do not generate it: hard to debug & profile.
Think of JIT-compiled assembly (eg. JVM)

. . . or even hand-written inlined assembly!
Painful enough to write for not bothering with DWARF
May not even be known by the programmer, breaks gdb
May be wrong (remember Linus!)

17/38 III – Unwinding data synthesis from binaries

Why would synthesis be useful?

As said earlier, DWARF is complex
Some compilers do not generate it: hard to debug & profile.
Think of JIT-compiled assembly (eg. JVM)
. . . or even hand-written inlined assembly!

Painful enough to write for not bothering with DWARF
May not even be known by the programmer, breaks gdb
May be wrong (remember Linus!)

17/38 III – Unwinding data synthesis from binaries

Why would synthesis be useful?

As said earlier, DWARF is complex
Some compilers do not generate it: hard to debug & profile.
Think of JIT-compiled assembly (eg. JVM)
. . . or even hand-written inlined assembly!

Painful enough to write for not bothering with DWARF
May not even be known by the programmer, breaks gdb
May be wrong (remember Linus!)

17/38 III – Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data.

That means forgetting
the blue part of the previous schemes.

Upon entering a function, we know (ABI)

CFA = %rsp − 8 RA = CFA+ 8

For each instruction, we know how it changes CFA.
We assume RA constant wrt. CFA.

 only CFA tracking matters (for unwinding)

We had a working strategy for a linear execution
We still have to handle

CFA expression
control flow graph

18/38 III – Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

Upon entering a function, we know (ABI)

CFA = %rsp − 8 RA = CFA+ 8

For each instruction, we know how it changes CFA.
We assume RA constant wrt. CFA.

 only CFA tracking matters (for unwinding)

We had a working strategy for a linear execution
We still have to handle

CFA expression
control flow graph

18/38 III – Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

Upon entering a function, we know (ABI)

CFA = %rsp − 8 RA = CFA+ 8

For each instruction, we know how it changes CFA.

We assume RA constant wrt. CFA.

 only CFA tracking matters (for unwinding)

We had a working strategy for a linear execution
We still have to handle

CFA expression
control flow graph

18/38 III – Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

Upon entering a function, we know (ABI)

CFA = %rsp − 8 RA = CFA+ 8

For each instruction, we know how it changes CFA.
We assume RA constant wrt. CFA.

 only CFA tracking matters (for unwinding)

We had a working strategy for a linear execution
We still have to handle

CFA expression
control flow graph

18/38 III – Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

Upon entering a function, we know (ABI)

CFA = %rsp − 8 RA = CFA+ 8

For each instruction, we know how it changes CFA.
We assume RA constant wrt. CFA.
 only CFA tracking matters (for unwinding)

We had a working strategy for a linear execution
We still have to handle

CFA expression
control flow graph

18/38 III – Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

Upon entering a function, we know (ABI)

CFA = %rsp − 8 RA = CFA+ 8

For each instruction, we know how it changes CFA.
We assume RA constant wrt. CFA.
 only CFA tracking matters (for unwinding)

We had a working strategy for a linear execution

We still have to handle

CFA expression
control flow graph

18/38 III – Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

Upon entering a function, we know (ABI)

CFA = %rsp − 8 RA = CFA+ 8

For each instruction, we know how it changes CFA.
We assume RA constant wrt. CFA.
 only CFA tracking matters (for unwinding)

We had a working strategy for a linear execution
We still have to handle

CFA expression
control flow graph

18/38 III – Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

Upon entering a function, we know (ABI)

CFA = %rsp − 8 RA = CFA+ 8

For each instruction, we know how it changes CFA.
We assume RA constant wrt. CFA.
 only CFA tracking matters (for unwinding)

We had a working strategy for a linear execution
We still have to handle

CFA expression

control flow graph

18/38 III – Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

Upon entering a function, we know (ABI)

CFA = %rsp − 8 RA = CFA+ 8

For each instruction, we know how it changes CFA.
We assume RA constant wrt. CFA.
 only CFA tracking matters (for unwinding)

We had a working strategy for a linear execution
We still have to handle

CFA expression
control flow graph

18/38 III – Unwinding data synthesis from binaries

CFA expression

Two possibilities:
Either %rbp is used as base pointer

Or we must track CFA wrt. %rsp
And update it after each instruction if needed

19/38 III – Unwinding data synthesis from binaries

CFA expression

Two possibilities:
Either %rbp is used as base pointer
Or we must track CFA wrt. %rsp

And update it after each instruction if needed

19/38 III – Unwinding data synthesis from binaries

Control flow graph

1 while(/* ... */) {
2 X;
3 if(/* ... */) {
4 A;
5 } else {
6 B;
7 }
8 }

Upon split (eg. X): nothing special, propagate end state of X
to children nodes A and B
Upon join (eg. while_end): check consistency of both input
states

If tricky, gcc will have used %rbp, even with
-fomit-frame-pointer.

20/38 III – Unwinding data synthesis from binaries

Control flow graph

1 while(/* ... */) {
2 X;
3 if(/* ... */) {
4 A;
5 } else {
6 B;
7 }
8 }

Upon split (eg. X): nothing special, propagate end state of X
to children nodes A and B
Upon join (eg. while_end): check consistency of both input
states

If tricky, gcc will have used %rbp, even with
-fomit-frame-pointer.

20/38 III – Unwinding data synthesis from binaries

Control flow graph

1 while(/* ... */) {
2 X;
3 if(/* ... */) {
4 A;
5 } else {
6 B;
7 }
8 }

Upon split (eg. X): nothing special, propagate end state of X
to children nodes A and B
Upon join (eg. while_end): check consistency of both input
states

If tricky, gcc will have used %rbp, even with
-fomit-frame-pointer.

20/38 III – Unwinding data synthesis from binaries

Trust the compiler to avoid tricky unwinding

1 int z = rand();
2 for(int x=1; x < z; ++x) {
3 int y[x]; // Variable size
4 /* do something */
5 }

At each loop cycle, y is larger
and allocated on the stack
Thus, %rsp is farther from CFA
at each cycle: no constant rule
CFA = %rsp + k .
A complex DWARF expression is
possible, but the compiler won’t.

$ gcc -O0 -g -c src.c -fomit-

frame-pointer

LOC CFA rbp ra
000 rsp+8 u c-8
001 rsp+16 c-16 c-8
004 rbp+16 c-16 c-8
010 rbp+16 c-16 c-8
0ce rsp+8 c-16 c-8

21/38 III – Unwinding data synthesis from binaries

Trust the compiler to avoid tricky unwinding

1 int z = rand();
2 for(int x=1; x < z; ++x) {
3 int y[x]; // Variable size
4 /* do something */
5 }

At each loop cycle, y is larger
and allocated on the stack
Thus, %rsp is farther from CFA
at each cycle: no constant rule
CFA = %rsp + k .
A complex DWARF expression is
possible, but the compiler won’t.

$ gcc -O0 -g -c src.c -fomit-

frame-pointer

LOC CFA rbp ra
000 rsp+8 u c-8
001 rsp+16 c-16 c-8
004 rbp+16 c-16 c-8
010 rbp+16 c-16 c-8
0ce rsp+8 c-16 c-8

21/38 III – Unwinding data synthesis from binaries

Trust the compiler to avoid tricky unwinding

1 int z = rand();
2 for(int x=1; x < z; ++x) {
3 int y[x]; // Variable size
4 /* do something */
5 }

At each loop cycle, y is larger
and allocated on the stack
Thus, %rsp is farther from CFA
at each cycle: no constant rule
CFA = %rsp + k .
A complex DWARF expression is
possible, but the compiler won’t.

$ gcc -O0 -g -c src.c -fomit-

frame-pointer

LOC CFA rbp ra
000 rsp+8 u c-8
001 rsp+16 c-16 c-8
004 rbp+16 c-16 c-8
010 rbp+16 c-16 c-8
0ce rsp+8 c-16 c-8

21/38 III – Unwinding data synthesis from binaries

Demo time!

22/38 III – Unwinding data synthesis from binaries

Unwinding data compilation

23/38 IV – Unwinding data compilation

Why compiling?

Remember that DWARF is slow!
Bytecode interpreted on the fly to generate the data tables
Done so for extreme compacity

Goal: reasonable time-space trade-off to speed up DWARF
Tables are now compiled functions returning the requested
DAWRF row

24/38 IV – Unwinding data compilation

Why compiling?

Remember that DWARF is slow!
Bytecode interpreted on the fly to generate the data tables
Done so for extreme compacity

Goal: reasonable time-space trade-off to speed up DWARF
Tables are now compiled functions returning the requested
DAWRF row

24/38 IV – Unwinding data compilation

Compilation overview

Compiled to C code
C code then compiled to native binary (gcc)
 gcc optimisations for free

Compiled as separate .so files, called eh_elfs

Morally a monolithic switch on IPs
Each case contains assembly that computes a row of the table

25/38 IV – Unwinding data compilation

Compilation example: original C, DWARF

1 DWARF
2 CFA ra
3 void fib7() { 0x615 rsp+8 c-8
4 int fibo [8]; 0x620 rsp+48 c-8
5 fibo [0] = 1;
6 fibo [1] = 1;
7 for (...)
8 ...
9 printf("%d\n", fibo [7]);

10 0x659 rsp+8 c-8
11 }

26/38 IV – Unwinding data compilation

Compilation example: generated C

1 unwind_context_t _eh_elf(
2 unwind_context_t ctx , uintptr_t pc)
3 {
4 unwind_context_t out_ctx;
5 switch(pc) {
6 ...
7 case 0x615 ... 0x618:
8 out_ctx.rsp = ctx.rsp + 8;
9 out_ctx.rip =

10 *((uintptr_t *)(out_ctx.rsp - 8));
11 out_ctx.flags = 3u;
12 return out_ctx;
13 ...
14 }
15 }

27/38 IV – Unwinding data compilation

Compilation choices

In order to keep the compiler simple and easily testable, the
whole DWARF5 instruction set is not supported.

Focus on x86_64
Focus on unwinding return address
 Allows building a backtrace

suitable for perf, not for gdb
Only supports unwinding registers: %rip, %rsp, %rbp, %rbx
Supports the wide majority (> 99.9%) of instructions used
Among 4000 randomly sampled filed, only 24 containing
unsupported instructions

28/38 IV – Unwinding data compilation

Interface: libunwind

libunwind: de facto standard library for unwinding
Relies on DWARF

libunwind-eh_elf: alternative implementation using eh_elfs

 alternative implementation of libunwind, almost plug-and-play
for existing projects!
 It is easy to use eh_elfs: just link against the right library!

29/38 IV – Unwinding data compilation

Size optimisation: outlining

Most of the rows boil down to a few common rows.
 outline them!

On libc, 20 827 rows → 302 outlined (1.5%)
Turn the big switch into a binary search if/else tree

 only 2.5 times bigger than DWARF

30/38 IV – Unwinding data compilation

Size optimisation: outlining

Most of the rows boil down to a few common rows.
 outline them!

On libc, 20 827 rows → 302 outlined (1.5%)
Turn the big switch into a binary search if/else tree

 only 2.5 times bigger than DWARF

30/38 IV – Unwinding data compilation

Size optimisation: outlining

Most of the rows boil down to a few common rows.
 outline them!

On libc, 20 827 rows → 302 outlined (1.5%)
Turn the big switch into a binary search if/else tree

 only 2.5 times bigger than DWARF

30/38 IV – Unwinding data compilation

Example with outlining

1 unwind_context_t _eh_elf(
2 unwind_context_t ctx , uintptr_t pc)
3 {
4 unwind_context_t out_ctx;
5 if(pc < 0x619) { ... }
6 else {
7 if(pc < 0x659) { // IP=0x619 ... 0x658
8 goto _factor_1;
9 }

10 ...
11 }
12

13 _factor_1:
14 out_ctx.rsp = ctx.rsp + (48);
15 out_ctx.rip = *((uintptr_t *)(out_ctx.rsp + (-8)));
16 out_ctx.flags = 3u;
17

18 ...
19

20 return out_ctx;
21 }

31/38 IV – Unwinding data compilation

Benchmarking requirements

1 Thousands of samples (single unwind: 10µs)
2 Interesting enough program to unwind: nested functions,

complex FDEs
3 Mitigate caching: don’t always unwind from the same point
4 Yet be fair: don’t always unwind from totally different places
5 Distribute evenly: if possible, also from within libraries

32/38 IV – Unwinding data compilation

perf instrumentation

perf is a state-of-the-art polling profiler for Linux.
used to get readings of the time spent in each function
works by regularly stopping the program, unwinding its stack,
then aggregating the gathered data

Instrumenting perf matches all the requirements!

Plug eh_elfs into perf: use eh_elfs instead of DWARF to
unwind the stack
Implement unwinding performance counters inside perf

Use perf on hackbench, a kernel stress-test program
Small program
Lots of calls
Relies on libc, libpthread

33/38 IV – Unwinding data compilation

perf instrumentation

perf is a state-of-the-art polling profiler for Linux.
used to get readings of the time spent in each function
works by regularly stopping the program, unwinding its stack,
then aggregating the gathered data

Instrumenting perf matches all the requirements!

Plug eh_elfs into perf: use eh_elfs instead of DWARF to
unwind the stack
Implement unwinding performance counters inside perf

Use perf on hackbench, a kernel stress-test program
Small program
Lots of calls
Relies on libc, libpthread

33/38 IV – Unwinding data compilation

Time performance

Unwinding method Frames
unwound

Tot. time
(µs)

Avg.
time / frame

(ns)

Time
ratio

eh_elfs 23506 14837 631 1
libunwind, cached 27058 441601 16320 25.9
libunwind, uncached 27058 671292 24809 39.3

34/38 IV – Unwinding data compilation

Space performance

Object % of binary size Growth factor

libc 21.88 2.41
libpthread 43.71 2.19

ld 22.09 2.97
hackbench 93.87 4.99

Total 22.81 2.44

35/38 IV – Unwinding data compilation

Conclusion

36/38 V – Conclusion

“Sorry, but last time was too f. . . painful. The whole (and only)
point of unwinders is to make debugging easy when a bug occurs.
But the dwarf unwinder had bugs itself, or our dwarf information
had bugs, and in either case it actually turned several trivial bugs
into a total undebuggable hell.”

— Linus Torvalds, Kernel mailing list, 2012

“If you can mathematically prove that the unwinder is correct —
even in the presence of bogus and actively incorrect unwinding
information — and never ever follows a bad pointer, I’ll reconsider.”

— Linus Torvalds, Kernel mailing list, 2012

Give us a few months: we will make Linus reconsider ;)

37/38

“Sorry, but last time was too f. . . painful. The whole (and only)
point of unwinders is to make debugging easy when a bug occurs.
But the dwarf unwinder had bugs itself, or our dwarf information
had bugs, and in either case it actually turned several trivial bugs
into a total undebuggable hell.”

“If you can mathematically prove that the unwinder is correct —
even in the presence of bogus and actively incorrect unwinding
information — and never ever follows a bad pointer, I’ll reconsider.”

— Linus Torvalds, Kernel mailing list, 2012

Give us a few months: we will make Linus reconsider ;)

37/38

“Sorry, but last time was too f. . . painful. The whole (and only)
point of unwinders is to make debugging easy when a bug occurs.
But the dwarf unwinder had bugs itself, or our dwarf information
had bugs, and in either case it actually turned several trivial bugs
into a total undebuggable hell.”

“If you can mathematically prove that the unwinder is correct —
even in the presence of bogus and actively incorrect unwinding
information — and never ever follows a bad pointer, I’ll reconsider.”

— Linus Torvalds, Kernel mailing list, 2012

Give us a few months: we will make Linus reconsider ;)

37/38

Slides: https://tobast.fr/files/oracle18.pdf

38/38

https://tobast.fr/files/oracle18.pdf

	DWARF and stack unwinding data
	Introduction
	Stack frames and unwinding
	DWARF tables

	Unwinding data validation
	Unwinding data synthesis from binaries
	Unwinding data compilation
	Compilation ahead-of-time
	Benchmarking
	Results

	Conclusion

