Growing the DWARF tougher:

synthesis, validation and compilation

Théophile Bastian

Based on work done with
Francesco Zappa Nardelli, Stephen Kell, Simon Ser

ENS Paris, INRIA

Slides: https://tobast.fr/files/oraclel8.pdf

https://tobast.fr/files/oracle18.pdf

@ DWARF and stack unwinding data
© Unwinding data validation
© Unwinding data synthesis from binaries

@ Unwinding data compilation

DWAREF and stack unwinding data

1/38 | — DWARF and stack unwinding data

We often use stack unwinding!

Program received signal SIGSEGV.
0x54625 in fct_b at segfault.c:5
5 printf ("%1\n", xb);

2/38 | — DWARF and stack unwinding data

We often use stack unwinding!

Program received signal SIGSEGV.
0x54625 in fct_b at segfault.c:5
5 printf ("%1\n", xb);

(gdb) backtrace
#0 0x54625 in fct_b at segfault.c:5
#1 0x54663 in fct_a at segfault.c:10
#2 0x54674 in main at segfault.c:14

2/38 | — DWARF and stack unwinding data

We often use stack unwinding!

Program received signal SIGSEGV.
0x54625 in fct_b at segfault.c:5
5 printf ("%1\n", xb);

(gdb) backtrace
#0 0x54625 in fct_b at segfault.c:5
#1 0x54663 in fct_a at segfault.c:10
#2 0x54674 in main at segfault.c:14

(gdb) frame 1

#1 0x54663 in fct_a at segfault.c:10
10 fct_b((intx) a);

2/38 | — DWARF and stack unwinding data

We often use stack unwinding!

Program received signal SIGSEGV.
0x54625 in fct_b at segfault.c:5
5 printf ("%1\n", xb);

(gdb) backtrace
#0 0x54625 in fct_b at segfault.c:5
#1 0x54663 in fct_a at segfault.c:10
#2 0x54674 in main at segfault.c:14

(gdb) frame 1
#1 0x54663 in fct_a at segfault.c:10
10 fct_b((intx) a);

(gdb) print a
$1 = 84

2/38 | — DWARF and stack unwinding data

We often use stack unwinding!

Program received signal SIGSEGV.
0x54625 in fct_b at segfault.c:5
5 printf ("%1\n", xb);

(gdb) backtrace
#0 0x54625 in fct_b at segfault.c:5
#1 0x54663 in fct_a at segfault.c:10
#2 0x54674 in main at segfault.c:14

(gdb) frame 1
#1 0x54663 in fct_a at segfault.c:10
10 fct_b((intx) a);
(gdb) print a
$1 = 84
How does it work?!

2/38 | — DWARF and stack unwinding data

We often use stack unwinding!

Program received signal SIGSEGV.
0x54625 in fct_b at segfault.c:5
5 printf ("%1\n", xb);

(gdb) backtrace
#0 0x54625 in fct_b at segfault.c:5
#1 0x54663 in fct_a at segfault.c:10
#2 0x54674 in main at segfault.c:14

(gdb) frame 1
#1 0x54663 in fct_a at segfault.c:10
10 fct_b((intx) a);

(gdb) print a
$1 = 84

How does it work?!

Address
N space
indexing

8 bytes¢

%rsp
initially; -
Y%rbp

%rsp
during =»
execution

Parent
stack
frame

param_8

param_7

Return address

(Saved %rbp)

Saved registers
Local variables

Unused space
for future
stack frames

2/38 | — DWARF and stack unwinding data

Call stack and registers

Address .
space q
indexing .
Parent
stack
frame
How ilio we ge; ;‘P’;e . bytesI s
gran parent ! P
Isn’t it as trivial as pop()? inﬁ{:ﬁ’y‘_’ Return address
%rbp (Saved %rbp)
Saved registers
%rsp Local variables
during =»
execution

Unused space
for future
stack frames

3/38 | — DWARF and stack unwinding data

Call stack and registers

Address .
space q
indexing .
Parent
stack
frame
How ilio we ge; ;‘P’;e o bytesI —
gran parent { param. 7
Isn’t it as trivial as pop()? inﬁ{:ﬁ’y‘_’ Return address
%rbp (Saved %rbp)
Saved registers
We only have %rsp and %rip. %rsp Local variables
during =»
execution
Unused space
for future
stack frames

3/38 | — DWARF and stack unwinding data

DWARF unwinding data

LOC CFA rbx rbp ri12 ri3 ri4 r15s ra
0084950 rsp+8 u u u u u u c-8
0084952 rsptl6 u u u u u c-16 c-8
0084954 rspt24 u u u u c-24 c-16 c-8
0084956 rspt32 u u u c-32 c-24 c-16 c-8
0084958 rspt40 u u c-40 c-32 c-24 c-16 c-8
0084959 rsp+48 u c-48 c-40 c-32 c-24 c-16 c-8

0084962 rspt64 c-56 c-48 c-40 c-32 c-24 c-16
0084a19 rspt56 c-56 c-48 c-40 c-32 «c-24 c-16
0084ald rspt48 c-56 c-48 c-40 c-32 c-24 c-16
0084ale rspt40 c-56 c-48 c-40 c-32 c-24 c-16
0084320 rspt32 c-56 c-48 c-40 c-32 c-24 c-16
0084222 rspt24 c-56 c-48 c-40 c-32 c-24 c-16
0084224 rsptl6 c-56 c-48 c-40 c-32 c-24 <c-16
0084a26 rsp+8 c-56 c-48 c-40 c-32 c-24 c-16
0084230 rspt64 c-56 c-48 c-40 c-32 c-24 c-16

0000(?0000
© 0 O 0O 0O 0O 0 0

4/38 | — DWARF and stack unwinding data

DWARF unwinding data

LOC CFA rbx rbp ri12 ri3 ri4 r15s ra
0084950 rsp+8 u u u u u u c-8
0084952 rsptl6 u u u u u c-16 c-8
0084954 rspt24 u u u u c-24 c-16 c-8
0084956 rspt32 u u u c-32 c-24 c-16 c-8
0084958 rspt40 u u c-40 c-32 c-24 c-16 c-8
0084959 rsp+48 u c-48 c-40 c-32 c-24 c-16 c-8

0084962 rspt64 c-56 c-48 c-40 c-32 c-24
0084a19 rspt56 @ c-56 c-48 c-40 c-32 c-24
0084ald rspt48 c-56 c-48 c-40 c-32 c-24
0084ale rsptd40 c-56 c-48 c-40 c-32 c-24
0084220 rspt32 c-56 c-48 c-40 c-32 c-24
0084222 rspt24 c-56 c-48 c-40 c-32 c-24
0084324 rsptl6 c-56 c-48 c-40 c-32 c-24
0084a26 rsp+8 c-56 c-48 c-40 c-32 c-24
0084230 rspt64 c-56 c-48 cc-40 c-32 c-24

4/38 | — DWARF and stack unwinding data

The real DWARF

00009b30 48 009b34 FDE cie=0000 pc=0084950..0084b37
DW_CFA_advance_loc: 2 to 0000000000084952
DW_CFA_def_cfa_offset: 16
DW_CFA_offset: r15 (r15) at cfa-16
DW_CFA_advance_loc: 2 to 0000000000084954
DW_CFA_def_cfa_offset: 24
DW_CFA_offset: r14 (r14) at cfa-24
DW_CFA_advance_loc: 2 to 0000000000084956
DW_CFA_def_cfa_offset: 32
DW_CFA_offset: r13 (r13) at cfa-32
DW_CFA_advance_loc: 2 to 0000000000084958
DW_CFA_def_cfa_offset: 40
DW_CFA_offset: r12 (r12) at cfa-40
DW_CFA_advance_loc: 1 to 0000000000084959
[...]

— constructed on-demand by a Turing-complete bytecode!

5/38 | — DWARF and stack unwinding data

The real DWARF

00009b30 48 009b34 FDE cie=0000 pc=0084950..0084b37
DW_CFA_advance_loc: 2 to 0000000000084952
DW_CFA_def_cfa_offset: 16

DW_CF.
DW_CF.
= Complex
DW_CF.
DW_CF.
DW_CFA_c

DW_CFA_c I
v & slow
DW_CFA_c L
DW_CFA_offset: r12 (r12) at cfa-40

DW_CFA_advance_loc: 1 to 0000000000084959
[...]

— constructed on-demand by a Turing-complete bytecode!

5/38 | — DWARF and stack unwinding data

Why does slow matter?

o After all, we're talking about debugging procedures ran by a
human being (slower than the machine).
...or are we?

6/38 | — DWARF and stack unwinding data

Why does slow matter?

o After all, we're talking about debugging procedures ran by a
human being (slower than the machine).
...or are we?

No!

6/38 | — DWARF and stack unwinding data

Why does slow matter?

o After all, we're talking about debugging procedures ran by a
human being (slower than the machine).
...or are we?

No!

@ Pretty much any program analysis tool

6/38 | — DWARF and stack unwinding data

Why does slow matter?

o After all, we're talking about debugging procedures ran by a
human being (slower than the machine).
...or are we?

No!

@ Pretty much any program analysis tool

e Profiling with polling profilers

6/38 | — DWARF and stack unwinding data

Why does slow matter?

o After all, we're talking about debugging procedures ran by a
human being (slower than the machine).
...or are we?

No!

@ Pretty much any program analysis tool
e Profiling with polling profilers
@ Exception handling in C++

Debug data is not only for debugging

6/38 | — DWARF and stack unwinding data

Difficult to generate

Major concern with DWAREF: it is difficult to generate (correctly).

@ Hard to generate: each compiler pass must keep it in sync

@ Most of it is seldom used (eg. unwinding data of dusty code),
and thus seldom tested

Yields to
@ unreliable DWARF: can cause headaches when debugging

@ or not generated at all (eg. OCaml until recently)

~ Complex, buggy, untested

7/38 | — DWARF and stack unwinding data

A debugging hell: Linux kernel

“Sorry, but last time was too f... painful. The whole (and only)
point of unwinders is to make debugging easy when a bug occurs.
But the dwarf unwinder had bugs itself, or our dwarf information
had bugs, and in either case it actually turned several trivial bugs
into a total undebuggable hell.”

— Linus Torvalds, Kernel mailing list, 2012

8/38 | — DWARF and stack unwinding data

A debugging hell: Linux kernel

“Sorry, but last time was too f... painful. The whole (and only)
point of unwinders is to make debugging easy when a bug occurs.
But the dwarf unwinder had bugs itself, or our dwarf information
had bugs, and in either case it actually turned several trivial bugs
into a total undebuggable hell.”

— Linus Torvalds, Kernel mailing list, 2012

This is where we still are!

8/38 | — DWARF and stack unwinding data

Unwinding data validation

9/38 Il — Unwinding data validation

Validating an example

<foo>:

push %ri15

push %ri14

mov $0x3, %eax

push %ri13

push %ri12

push %rbp

push %rbx

sub $0x68,%rsp
cmp $0x1,%edi

add $0x68, %rsp
pop %rbx

pop %rbp

J

10/38 Il = Unwinding data validation

Validating an example

<foo>: CFA ra
push %ri5 rsp+8 c-8
push %ri14 rsp+16 c-8
mov $0x3, %eax rsp+24 c-8
push %ri13 rsp+24 c-8
push %ri12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68, %rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8
add $0x68, %rsp rsp+160 c-8
pop %rbx rsp+56 c-8
pop %rbp rsp+48 c-8

10/38 Il — Unwinding data validation

Validating an example

<foo>: CFA ra
push %ri15 rsp+8 c-8
push %ri14 rsp+16 c-8
mov $0x3, %eax rsp+24 c-8
push %ri13 rsp+24 c-8
push %ri12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68, %rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8
add $0x68, %rsp rsp+160 c-8
pop %rbx rsp+56 c-8
pop %rbp rsp+48 c-8

Upon function call, ra = *(%rsp) (ABI)

10/38 Il — Unwinding data validation

Validating an example

<foo>: CFA ra
push %ri5 rsp+8 c-8
push %ri14 rsp+16 c-8
mov $0x3, %eax rsp+24 c-8
push %ri13 rsp+24 c-8
push %ri12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68, %rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8
add $0x68, %rsp rsp+160 c-8
pop %rbx rsp+56 c-8
pop %rbp rsp+48 c-8

push decreases %rsp by 8: ra = *(%rsp + 8)

10/38 Il — Unwinding data validation

Validating an example

<foo>: CFA ra
push %ri5 rsp+8 c-8
push %ri14 rsp+16 c-8
mov $0x3, %eax rsp+24 c-8
push %ri13 rsp+24 c-8
push %ri12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68, %rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8
add $0x68, %rsp rsp+160 c-8
pop %rbx rsp+56 c-8
pop %rbp rsp+48 c-8

and again: ra = *(%rsp + 16)

10/38 Il — Unwinding data validation

Validating an example

<foo>: CFA ra
push %ri5 rsp+8 c-8
push %ri14 rsp+16 c-8
mov $0x3, %eax rsp+24 c-8
push %ri3 rsp+24 c-8
push %ri12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68, %rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8
add $0x68, %rsp rsp+160 c-8
pop %rbx rsp+56 c-8
pop %rbp rsp+48 c-8

This mov leaves %rsp untouched: ra = *(%rsp + 16)

10/38 Il — Unwinding data validation

Validating an example

<foo>: CFA ra
push %ri5 rsp+8 c-8
push %ri14 rsp+16 c-8
mov $0x3, %eax rsp+24 c-8
push %ri13 rsp+24 c-8
push %ri12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68, %rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8
add $0x68, %rsp rsp+160 c-8
pop %rbx rsp+56 c-8
pop %rbp rsp+48 c-8

The unwinding table can actually be seen as
an abstract interpretation of the code. ..

10/38 Il — Unwinding data validation

Validating an example

<foo>: CFA ra
push %ri5 rsp+8 c-8
push %ri14 rsp+16 c-8
mov $0x3, %eax rsp+24 c-8
push %ri13 rsp+24 c-8
push %ri12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68, %rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8
add $0x68, %rsp rsp+160 c-8
pop %rbx rsp+56 c-8
pop %rbp rsp+48 c-8

...and thus, for a given run, be re-computed for
verification

10/38 Il — Unwinding data validation

Validating an example

<foo>: CFA ra
push %ri5 rsp+8 c-8
push %ri14 rsp+16 c-8
mov $0x3, %eax rsp+24 c-8
push %ri13 rsp+24 c-8
push %ri12 rsp+32 c-8
push %rbp rsp+40 c-8
push %rbx rsp+48 c-8
sub $0x68, %rsp rsp+56 c-8
cmp $0x1,%edi rsp+160 c-8

If, within an execution,
o ra = *(0xFFFF1098)
e %rsp = OxFFFF1000
We can evaluate both expressions and compare

4

10/38 Il — Unwinding data validation

Dynamic validation

Abstract state

o Stack of actual addresses where return addresses are stored

11/38 Il — Unwinding data validation

Dynamic validation

Abstract state

o Stack of actual addresses where return addresses are stored

Abstract instruction semantics
call push %rsp on the stack
ret pop from the stack

11/38 Il — Unwinding data validation

Dynamic validation

Abstract state

o Stack of actual addresses where return addresses are stored

Abstract instruction semantics
call push %rsp on the stack
ret pop from the stack

Validation of each instruction
o Evaluate the return address provided by DWARF
e Compare it with the value at the top of the stack

11/38 Il — Unwinding data validation

In practice: eh_frame_check

Strategy implemented and working: eh_frame_check

o gdb allows for Python instrumentation

12/38 Il — Unwinding data validation

In practice: eh_frame_check

Strategy implemented and working: eh_frame_check

o gdb allows for Python instrumentation

Parse ELF and DWARF data (pyelftools)

Run the binary inside gdb

Pause at each (assembly) step

Jointly evaluate DWARF data and the abstract stack

@ Report upon error

Works, but... Python is slow!
A few thousand of ASM instructions/second (good enough)

12/38 Il — Unwinding data validation

short a,b,g;
long c;
char d;
int e, f; CSmith
+ Creduce

void main() { + eh_frame_check

for(; f; f++)
for(; e; e++)
for(; c; c++) {

RN ~ LLVM (3.8) bug!

for(; d <= 1; d++);

13/38 Il — Unwinding data validation

<foo>: CFA ra
4004e0@ push %rbox rsp+8 c-8
rsp+16 c-8

C...]
40061d pop %»rbx rsp+16 c-8
40061e retq rsp+16 c-8

14/38 Il — Unwinding data validation

Abstract state [0xFFFF1000]

<foo>: CFA ra
4004e0 push %rbx rsp+8 c-8
rsp+16 c-8

C...]
40061d pop %rbx rsp+16 c-8
40061e retq rsp+16 c-8

14/38 Il — Unwinding data validation

Abstract state [0xFFFF1000]
%rsp OxFFFF1000

<foo>: CFA ra
4004e0 push %rbox rsp+t8 c-8
rsp+16 c-8

C...]
40061d pop %»rbx rsp+16 c-8
40061e retq rsp+16 c-8

14/38 Il — Unwinding data validation

A real bug!

Abstract state [0xFFFF1000]
%rsp OxFFFF1000

<foo>: CFA ra
4004e0 push %rbox rsp+t8 c-8
rsp+16 c-8

C...]
40061d pop %»rbx rsp+16 c-8
40061e retq rsp+16 c-8

14/38 Il — Unwinding data validation

Abstract state [0xFFFF1000]
%rsp OxFFFFOFF8

<foo>: CFA ra
4004e0@ push %rbox rsp+8 c-8
rsp+16 c-8

C...]
40061d pop %»rbx rsp+16 c-8
40061e retq rsp+16 c-8

14/38 Il — Unwinding data validation

A real bug!

Abstract state [0xFFFF1000]
%rsp OxFFFFOFF8

<foo>: CFA ra
4004e0@ push %rbox rsp+8 c-8
rsp+16 c-8

C...]
40061d pop %»rbx rsp+16 c-8
40061e retq rsp+16 c-8

14/38 Il — Unwinding data validation

Abstract state [0xFFFF1000]
%rsp OxFFFFOFF8

<foo>: CFA ra
4004e0@ push %rbox rsp+8 c-8
rsp+16 c-8

C...]
40061d pop %rbox rsp+16 c-8
40061e retq rsp+16 c-8

14/38 Il — Unwinding data validation

A real bug!

Abstract state [0xFFFF1000]
%rsp OxFFFFOFF8

<foo>: CFA ra
4004e0@ push %rbox rsp+8 c-8
rsp+16 c-8

C...]
40061d pop %rbox rsp+16 c-8
40061e retq rsp+16 c-8

14/38 Il — Unwinding data validation

Abstract state [0xFFFF1000]
%rsp OxFFFF1000

<foo>: CFA ra
4004e0@ push %rbox rsp+8 c-8
rsp+16 c-8

C...]
40061d pop %»rbx rsp+16 c-8
40061e retq rsp+16 c-8

14/38 Il — Unwinding data validation

Abstract state [0xFFFF1000]
%rsp OxFFFF1000

<foo>: CFA ra
4004e0@ push %rbox rsp+8 c-8
rsp+16 c-8

C...]
40061d pop %»rbx rsp+16 c-8
40061e retq rsp+16 c-8

14/38 Il — Unwinding data validation

Abstract state [0xFFFF1000]
%rsp OxFFFF1000

<foo>: CFA ra
4004e0@ push %rbox rsp+8 c-8
rsp+16 c-8

C...]
40061d pop %»rbx rsp+16 c-8
40061e retq rsp+16 c-8

~ LLVM bug #13161

14/38 Il — Unwinding data validation

What for, in the end?

@ We can find bugs in compilers

15/38 Il — Unwinding data validation

What for, in the end?

@ We can find bugs in compilers
@ We can validate DWARF tables!

15/38 Il — Unwinding data validation

What for, in the end?

@ We can find bugs in compilers
@ We can validate DWARF tables!

@ ...well, only along one execution path. ..

15/38 Il — Unwinding data validation

What for, in the end?

@ We can find bugs in compilers
@ We can validate DWAREF tables!
@ ...well, only along one execution path. ..

@ but mostly we are close to a working algorithm to synthesize
unwinding data from binaries!

15/38 Il — Unwinding data validation

Unwinding data synthesis from binaries

16/38 11l — Unwinding data synthesis from binaries

Why would synthesis be useful?

17/38 11l — Unwinding data synthesis from binaries

Why would synthesis be useful?

@ As said earlier, DWARF is complex

17/38 11l — Unwinding data synthesis from binaries

Why would synthesis be useful?

@ As said earlier, DWARF is complex

@ Some compilers do not generate it: hard to debug & profile.

17/38 11l — Unwinding data synthesis from binaries

Why would synthesis be useful?

@ As said earlier, DWARF is complex
@ Some compilers do not generate it: hard to debug & profile.
@ Think of JIT-compiled assembly (eg. JVM)

17/38 11l — Unwinding data synthesis from binaries

Why would synthesis be useful?

@ As said earlier, DWARF is complex
@ Some compilers do not generate it: hard to debug & profile.

@ Think of JIT-compiled assembly (eg. JVM)
@ ...or even hand-written inlined assembly!

17/38 11l — Unwinding data synthesis from binaries

Why would synthesis be useful?

@ As said earlier, DWARF is complex
@ Some compilers do not generate it: hard to debug & profile.
@ Think of JIT-compiled assembly (eg. JVM)

@ ...or even hand-written inlined assembly!

o Painful enough to write for not bothering with DWARF
e May not even be known by the programmer, breaks gdb
o May be wrong (remember Linus!)

17/38 11l — Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data.

18/38 11l — Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

e Upon entering a function, we know (ABI)

CFA = %rsp — 8 RA=CFA+ 38

18/38 11l — Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

e Upon entering a function, we know (ABI)
CFA = %rsp — 8 RA=CFA+8

@ For each instruction, we know how it changes CFA.

18/38 11l — Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

e Upon entering a function, we know (ABI)
CFA = %rsp — 8 RA=CFA+8

@ For each instruction, we know how it changes CFA.
@ We assume RA constant wrt. CFA.

18/38 11l — Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

e Upon entering a function, we know (ABI)
CFA = %rsp — 8 RA=CFA+8

@ For each instruction, we know how it changes CFA.
@ We assume RA constant wrt. CFA.
~ only CFA tracking matters (for unwinding)

18/38 11l — Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

e Upon entering a function, we know (ABI)
CFA = %rsp — 8 RA=CFA+8

@ For each instruction, we know how it changes CFA.
@ We assume RA constant wrt. CFA.
~ only CFA tracking matters (for unwinding)

@ We had a working strategy for a linear execution

18/38 11l — Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

e Upon entering a function, we know (ABI)
CFA = %rsp — 8 RA=CFA+8

@ For each instruction, we know how it changes CFA.
@ We assume RA constant wrt. CFA.

~ only CFA tracking matters (for unwinding)
@ We had a working strategy for a linear execution
@ We still have to handle

18/38 11l — Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

e Upon entering a function, we know (ABI)
CFA = %rsp — 8 RA=CFA+8

@ For each instruction, we know how it changes CFA.
@ We assume RA constant wrt. CFA.
~ only CFA tracking matters (for unwinding)
@ We had a working strategy for a linear execution
@ We still have to handle
o CFA expression

18/38 11l — Unwinding data synthesis from binaries

What have we got so far?

We now want to synthesize unwinding data. That means forgetting
the blue part of the previous schemes.

e Upon entering a function, we know (ABI)
CFA = %rsp — 8 RA=CFA+8

@ For each instruction, we know how it changes CFA.
@ We assume RA constant wrt. CFA.

~ only CFA tracking matters (for unwinding)
@ We had a working strategy for a linear execution
@ We still have to handle

o CFA expression
e control flow graph

18/38 11l — Unwinding data synthesis from binaries

CFA expression

Two possibilities:

@ Either %rbp is used as base pointer

19/38 11l — Unwinding data synthesis from binaries

CFA expression

Two possibilities:
@ Either %rbp is used as base pointer

@ Or we must track CFA wrt. %rsp
o And update it after each instruction if needed

19/38 11l — Unwinding data synthesis from binaries

Control flow graph

while(/* ... */) {
X;
if(/* ... *x/) {
A;
} else {
B;
3
}

20/38 11l — Unwinding data synthesis from binaries

Control flow graph

while(/* ... */) {
X;
if(/* ... *x/) {
A;
} else {
B;
3
}

20/38 11l — Unwinding data synthesis from binaries

Control flow graph

while(/* ... */) {
X;
if(/* ... *x/) {
A;
} else {
B;
3
}

e Upon split (eg. X): nothing special, propagate end state of X
to children nodes A and B

e Upon join (eg. while_end): check consistency of both input
states

o If tricky, gcc will have used %rbp, even with
-fomit-frame-pointer.

20/38 11l — Unwinding data synthesis from binaries

Trust the compiler to avoid tricky unwinding

int z = rand();

for(int x=1; x < z; ++x) {
int y[x]; // Variable size
/* do something =*/

21/38 11l — Unwinding data synthesis from binaries

Trust the compiler to avoid tricky unwinding

int z = rand();

for(int x=1; x < z; ++x) {
int y[x]; // Variable size
/* do something =*/

@ At each loop cycle, y is larger
and allocated on the stack

@ Thus, %rsp is farther from CFA
at each cycle: no constant rule
CFA = %rsp + k.

@ A complex DWARF expression is
possible, but the compiler won't.

21/38 11l — Unwinding data synthesis from binaries

Trust the compiler to avoid tricky unwinding

int z = rand();
for(int x=1; x < z; ++x) { $ gcc -00 -g -c src.c -fomit-
int y[x]; // Variable size

. frame-pointer
/* do something =*/

}
@ At each loop cycle, y is larger L‘)gg CFA+8 rbp r"js
and allocated on the stack rsp Y ¢
] 001 rsp+16 c-16 c-8
@ Thus, %rsp is farther from CFA 004 rbp+16 c-16 c-8
at each cycle: no constant rule 010 rbp+16 c-16 c-8
CFA = %orsp + k. O@ce rsp+8 c-16 c-8

@ A complex DWARF expression is
possible, but the compiler won't.

21/38 11l — Unwinding data synthesis from binaries

Demo time!

22/38 11l — Unwinding data synthesis from binaries

Unwinding data compilation

23/38 IV — Unwinding data compilation

Why compiling?

@ Remember that DWARF is slow!
@ Bytecode interpreted on the fly to generate the data tables

@ Done so for extreme compacity

24/38 IV — Unwinding data compilation

Why compiling?

Remember that DWARF is slow!
Bytecode interpreted on the fly to generate the data tables

Done so for extreme compacity

Goal: reasonable time-space trade-off to speed up DWARF

Tables are now compiled functions returning the requested
DAWREF row

24/38 IV — Unwinding data compilation

Compilation overview

Compiled to C code

C code then compiled to native binary (gcc)
~ gcc optimisations for free

Compiled as separate .so files, called eh_elfs

Morally a monolithic switch on IPs

Each case contains assembly that computes a row of the table

25/38 IV — Unwinding data compilation

Compilation example: original C, DWARF

DWARF
CFA ra
void fib7 () { 0x615 rsp+8 c-8
int fibo[8]; 0x620 rsp+48 c-8
fibo[0] = 1;
fibo[1] = 1;
for(...)
printf ("%d\n", fibo[71]);
0x659 rsp+8 c-8

26/38 IV — Unwinding data compilation

Compilation example: generated C

unwind_context_t _eh_elf(
unwind_context_t ctx, uintptr_t pc)

unwind_context_t out_ctx;
switch(pc) {

case 0x615 ... 0x618:
out_ctx.rsp = ctx.rsp + 8;
out_ctx.rip =
((uintptr_t) (out_ctx.rsp - 8));
out_ctx.flags = 3u;
return out_ctx;

27/38 IV — Unwinding data compilation

Compilation choices

In order to keep the compiler simple and easily testable, the
whole DWARFS5 instruction set is not supported.

o Focus on x86 64

e Focus on unwinding return address

~ Allows building a backtrace
suitable for perf, not for gdb
Only supports unwinding registers: %rip, %rsp, %rbp, %rbx
Supports the wide majority (> 99.9%) of instructions used
Among 4000 randomly sampled filed, only 24 containing
unsupported instructions

28/38 IV — Unwinding data compilation

Interface: libunwind

@ libunwind: de facto standard library for unwinding
o Relies on DWARF

@ libunwind-eh_elf: alternative implementation using eh_elfs

~ alternative implementation of libunwind, almost plug-and-play
for existing projects!

~ It is easy to use eh_elfs: just link against the right library!

29/38 IV — Unwinding data compilation

Size optimisation: outlining

@ Most of the rows boil down to a few common rows.
~ outline them!

30/38 IV — Unwinding data compilation

Size optimisation: outlining

@ Most of the rows boil down to a few common rows.

~+ outline them!
@ On libc, 20827 rows — 302 outlined (1.5 %)
@ Turn the big switch into a binary search if/else tree

30/38 IV — Unwinding data compilation

Size optimisation: outlining

@ Most of the rows boil down to a few common rows.

~+ outline them!
@ On libc, 20827 rows — 302 outlined (1.5 %)
@ Turn the big switch into a binary search if/else tree

~+ only 2.5 times bigger than DWARF

30/38 IV — Unwinding data compilation

Example with outlining

unwind_context_t _eh_elf(

}

unwind_context_t ctx, uintptr_t pc)

unwind_context_t out_ctx;
if(pc < 0x619) { ... }
else {
if(pc < @0x659) { // IP=0x619 ... 0x658
goto _factor_1;

_factor_1:

out_ctx.rsp = ctx.rsp + (48);

out_ctx.rip = *x((uintptr_t*) (out_ctx.rsp + (-8)));
out_ctx.flags = 3u;

return out_ctx;

31/38 IV — Unwinding data compilation

Benchmarking requirements

@ Thousands of samples (single unwind: 10 us)

@ Interesting enough program to unwind: nested functions,
complex FDEs

© Mitigate caching: don't always unwind from the same point
@ Yet be fair: don't always unwind from totally different places
@ Distribute evenly: if possible, also from within libraries

32/38 IV — Unwinding data compilation

perf instrumentation

perf is a state-of-the-art polling profiler for Linux.
@ used to get readings of the time spent in each function

@ works by regularly stopping the program, unwinding its stack,
then aggregating the gathered data

33/38 IV — Unwinding data compilation

perf instrumentation

perf is a state-of-the-art polling profiler for Linux.
@ used to get readings of the time spent in each function

@ works by regularly stopping the program, unwinding its stack,
then aggregating the gathered data

Instrumenting perf matches all the requirements!
@ Plug eh_elfs into perf: use eh_elfs instead of DWARF to
unwind the stack

@ Implement unwinding performance counters inside perf

@ Use perf on hackbench, a kernel stress-test program

e Small program
e Lots of calls
o Relies on libc, libpthread

33/38 IV — Unwinding data compilation

Time performance

Avg.

- Frames Tot. time . Time
Unwinding method unwound (115) tlme({,sf)rame ratio
eh_elfs 23506 14837 631 1
libunwind, cached 27058 441601 16320 25.9
libunwind, uncached 27058 671292 24809 39.3

34/38 IV — Unwinding data compilation

Space performance

Object % of binary size Growth factor

libc 21.88 2.41
libpthread 43.71 2.19
Id 22.09 2.97
hackbench 03.87 4.99
Total 22.81 2.44

35/38 IV — Unwinding data compilation

Conclusion

36/38 V — Conclusion

“Sorry, but last time was too f... painful. The whole (and only)
point of unwinders is to make debugging easy when a bug occurs.
But the dwarf unwinder had bugs itself, or our dwarf information
had bugs, and in either case it actually turned several trivial bugs
into a total undebuggable hell."

— Linus Torvalds, Kernel mailing list, 2012

37/38

“Sorry, but last time was too f.. . painful. The whole (and only)
point of unwinders is to make debugging easy when a bug occurs.
But the dwarf unwinder had bugs itself, or our dwarf information
had bugs, and in either case it actually turned several trivial bugs
into a total undebuggable hell.”

“If you can mathematically prove that the unwinder is correct —
even in the presence of bogus and actively incorrect unwinding
information — and never ever follows a bad pointer, I'll reconsider.”

— Linus Torvalds, Kernel mailing list, 2012

37/38

“Sorry, but last time was too f.. . painful. The whole (and only)
point of unwinders is to make debugging easy when a bug occurs.
But the dwarf unwinder had bugs itself, or our dwarf information
had bugs, and in either case it actually turned several trivial bugs
into a total undebuggable hell.”

“If you can mathematically prove that the unwinder is correct —
even in the presence of bogus and actively incorrect unwinding
information — and never ever follows a bad pointer, I'll reconsider.”

— Linus Torvalds, Kernel mailing list, 2012

Give us a few months: we will make Linus reconsider ;)

37/38

Keep Breathing

A
‘
= =
v S’
: el —

That's ThKey

Slides: https://tobast.fr/files/oracle18.pdf

38/38

https://tobast.fr/files/oracle18.pdf

	DWARF and stack unwinding data
	Introduction
	Stack frames and unwinding
	DWARF tables

	Unwinding data validation
	Unwinding data synthesis from binaries
	Unwinding data compilation
	Compilation ahead-of-time
	Benchmarking
	Results

	Conclusion

