
Internship report
Concurrent games as event structures

Théophile Bastian, supervised by Glynn Winskel and Pierre Clairambault
Cambridge University

June-July 2016

Abstract

During my internship, I have worked on a deterministic game semantics model for a minimal-
istic concurrent language, described using the games as event structures formalism. I have proved
the adequacy of this model with the operational semantics of the language modelled; and I have
implemented this model, allowing one to input an expression of the language and getting its rep-
resentation as Dot graph. This implementation also supports basic operations on event structures,
which could be useful to other people working in this domain.

Contents

1 Introduction 1

2 A linear λ-calculus with concurrency primitives: λLCCS 2
2.1 A linear variant of CCS : LCCS . 3
2.2 Lifting to the higher order: linear λ-calculus . 4
2.3 Examples . 4

3 A games model 5
3.1 The event structures framework . 5

3.1.1 Event structures . 5
3.1.2 Concurrent games . 6
3.1.3 Operations on games and strategies . 8

3.2 Interpretation of λLCCS . 10
3.3 Adequacy . 11

4 Implementation of deterministic concurrent games 13
4.1 Structures . 13
4.2 Generic operations . 13
4.3 Modelling λLCCS . 13

5 Conclusion 13

1 Introduction

Game semantics are a kind of denotational semantics in which a program’s behavior is abstracted
as a two-players game, in which Player plays for the program and Opponent plays for the environment
of the program (the user, the operating system, . . .). The execution of a program, in this formalism,
is then represented as a succession of moves. For instance, the user pressing a key on the keyboard
would be a move of Opponent, to which Player could react by triggering the corresponding action (eg.
adding the corresponding letter in a text field).

1

Game semantics emerged mostly with [HO00] and [AJM00], independently establishing a fully-
abstract model for PCF using game semantics, while “classic” semantics had failed to provide a
fully-abstract, reasonable and satisfying model. But this field mostly gained in notoriety with the
development of techniques to capture imperative programming languages constructions, among which
references handling [AM96], followed by higher-order references [AHM98], allowing to model languages
with side effects; or exception handling [Lai01b]. Since then, the field has been deeply explored,
providing a wide range of such constructions in the literature.

A success of game semantics is to provide compositional and syntax-free semantics. Syntax-free,
because representing a program as a strategy on a game totally abstracts it from the original syntax
of the programming language, representing only the behavior of a program reacting to its execution
environment, which is often desirable in semantics. Compositional, because game semantics are usually
defined by induction over the syntax, thus easily composed. For instance, it is worth noting that the
application of one term to another is represented as the composition of the two strategies.

Concurrency in game semantics. In the continuity of the efforts put forward to model imperative
primitives in game semantics, it was natural to focus at some point on modelling concurrency. The
problem was first tackled by Laird [Lai01a], introducing game semantics for a λ-calculus with a
few additions, as well as a parallel execution operator and communication on channels. Ghica and
Murawski then simplified Laird’s approach, and gave a fully abstract model for a slightly more
realistic concurrent programming language with shared memory in [GM04].

However, both of these constructions are based on interleavings. That is, they model programs
on tree-like games, games in which the moves that a player is allowed to play at a given point are
represented as a tree (eg., in a state A, Player can play the move x by following an edge of the tree
starting from A, thus reaching B and allowing Opponent to play a given set of moves — the outgoing
edges of B). The concurrency is then represented as the interleaving of all possible sequences of moves,
in order to reach a game tree in which every possible “unordered” (ie., that is not enclosed in any kind
of synchronisation block, as with semaphores) combination of moves is a valid path.

However, this approach introduces non-determinism in the strategies: if two moves are available to
a player, the model states that they make a non-deterministic uniform choice. Yet, even for concurrent
programs it is often a desirable property that they should behave consistently with the environment,
meaning that they are deterministic up to the choice of the scheduler. Such determinism can be ensured
statically, via typing. This idea was explored outside of the game semantics context, for instance
by [Rey78], establishing a type-checking system to restrict concurrent programs to deterministic ones.
Some recent work makes use of linear logic [CP10] for similar purposes as well. Yet, the interleavings
game semantics of these languages remains non-deterministic.

The purpose of this internship was to try to take a first step towards the reunification of those two
developments. For that purpose, my objective was to give a deterministic game semantics to a linear
lambda-calculus enriched with parallel and sequential execution operators, as well as synchronization
on channels. In order to model this, I used the games as event structures formalism, described later
on and introduced in [RW11] by S. Rideau and G. Winskel. Roughly, event structures represent
a strategy as a partial order on the moves, stating that move x can only be played after move y,
which is more flexible than tree-like game approaches. Although a full-abstraction result could not be
reached — but is not so far away —, I have proved the adequacy of the operational and denotational
semantics, and have obtained an implementation of the (denotational) game semantics, that is, code
that translates a term of the language into its corresponding strategy.

2 A linear λ-calculus with concurrency primitives: λLCCS

The language on which my internship was focused was meant to be simple, easy to parse and easy to
work on both in theory and on the implementation. It should of course include concurrency primitives.
For these reasons, we chose to consider a variant of CCS [Mil80] — a simple standard language including
parallel and sequential execution primitives, as well as synchronization of processes through channels

2

—, lifted up to the higher order through a λ-calculus. The language was then restricted to a linear
one — that is, each identifier declared must be referred to exactly once —, partly to keep the model
simple, partly to meet the determinism requirements through the banning of interference.

2.1 A linear variant of CCS : LCCS

The variant of CCS we chose to use has two base types: processes (P) and channels (C). It has
two base processes, 0 (failure) and 1 (success), although a process can be considered “failed” without
reducing to 0 (in case of deadlock).

Terms

t, u, . . . ∶∶= 1 (success)
∣ 0 (error)
∣ t ∥ u (parallel)
∣ t ⋅ u (sequential)
∣ (νa)t (new channel)

Types

A,B, . . . ∶∶= P (process)
∣ C (channel)

Figure 1: LCCS terms and types

The syntax is pretty straightforward to understand: 0 and 1 are base processes; ∥ executes in
parallel its two operands; ⋅ executes sequentially its two operands (or synchronizes on a channel if its
left-hand operand is a channel); (νa) creates two new channels, a and ā, on which two processes can
be synchronized. Here, the “synchronization” simply means that a call to the channel is blocking until
its dual channel has been called as well.

The language is simply typed as in figure 2. Note that binary operators split their environment
between their two operands, ensuring that each identifier is used at most once, and that no rules (in
particular the axiom rules) “forget” any part of the environment, ensuring that each identifier is used
at least once. For instance, in Γ = [p ∶ P, q ∶ P], 0 cannot be typed (ie. Γ ⊢ 0 ∶ P is not a valid rule).

⊢ 0 ∶ P
(Ax0)

⊢ 1 ∶ P
(Ax1)

t ∶ A ⊢ t ∶ A
(Ax)

Γ, a ∶ C, ā ∶ C ⊢ P ∶ P
Γ ⊢ (νa)P ∶ P

(ν)

Γ ⊢ P ∶ P ∆ ⊢ Q ∶ P
Γ,∆ ⊢ P ∥ Q ∶ P

(∥)
Γ ⊢ P ∶ P ∆ ⊢ Q ∶ P

Γ,∆ ⊢ P ⋅Q ∶ P
(⋅P)

Γ ⊢ P ∶ P
Γ, a ∶ C ⊢ a ⋅ P ∶ P

(⋅C)

Figure 2: LCCS typing rules

We also equip this language with operational semantics, in the form of a labeled transition system
(LTS), as described in figure 3, where a denotes a channel and x denotes any possible label.

a ⋅ P
a
Ð→ P 1 ∥ P

τ
Ð→ P 1 ⋅ P

τ
Ð→ P

P
τc
Ð→ Q

(νa)P
τ
Ð→ Q

(c ∈ {a, ā})
P

a
Ð→ P ′ Q

ā
Ð→ Q′

P ∥ Q
τa
Ð→ P ′ ∥ Q′

P
x
Ð→ P ′

P ∥ Q
x
Ð→ P ′ ∥ Q

Q
x
Ð→ Q′

P ∥ Q
x
Ð→ P ∥ Q′

P
x
Ð→ P ′

P ⋅Q
x
Ð→ P ′ ⋅Q

P
x
Ð→ P ′

(νa)P
x
Ð→ (νa)P ′

(x /∈ {a, τa})

Figure 3: LCCS operational semantics

We consider that a term P converges whenever P τ
Ð→

∗
1, and we write P ⇓.

The τa reduction scheme may sound a bit unusual. It is, however, necessary. Consider the reduction
of (νa)(a ⋅ 1 ∥ ā ⋅ 1): the inner term τa-reduces to 1, thus allowing the whole term to reduce to 1; but

3

if we replaced that τa with a τ , the whole term would reduce to (νa)1, which has no valid type since
a and ā are not consumed (linearity). Our semantics would then not satisfy subject reduction for
τ -reductions.

2.2 Lifting to the higher order: linear λ-calculus

In order to reach the studied language, λLCCS, we have to lift up LCCS to a λ-calculus. To
do so, we add to the language the constructions of figure 4, which are basically the usual λ-calculus
constructions slightly transformed to be linear (which is mostly reflected by the typing rules).

Terms

t, u, . . . ∶∶= x ∈ V (variable)
∣ t u (application)

∣ λxA ⋅ t (abstraction)
∣ LCCS constructions

Types

A,B, . . . ∶∶= A⊸ B (linear arrow)
∣ P ∣ C (LCCS)

Figure 4: Linear λ-calculus terms and types

To keep the language simple and ease the implementation, the λ-abstractions are annotated with
the type of their abstracted variable. The usual → symbol was also changed to ⊸, to clearly remind
that the terms are linear.

In order to enforce the linearity, the only typing rules of the usual λ-calculus that have to be
changed are the (Ax) and (App) presented in figure 5. The (Abs) rule is the usual one.

x ∶ A ⊢ x ∶ A
(Ax)

Γ ⊢ t ∶ A⊸ B ∆ ⊢ u ∶ A

Γ,∆ ⊢ t u ∶ B
(App)

Γ, x ∶ A ⊢ t ∶ B

Γ ⊢ λxA ⋅ t ∶ A⊸ B
(Abs)

Figure 5: Linear λ-calculus typing rules

The linearity is here guaranteed: in the (Ax) rule, the environment must be x ∶ A instead of the
usual Γ, x ∶ A, ensuring that each variable is used at least once; while the environment split in the
binary operators’ rules ensures that each variable is used at most once (implicitly, Γ ∩∆ = ∅).

To lift the operational semantics to λLCCS, we only need to add one rule:

P Ð→β P
′

P
τ
Ð→ P ′

2.3 Examples

• Simple channel usage: T1 ∶= (νa) (a ⋅1 ∥ ā ⋅1). This term converges: (a ⋅ 1 ∥ ā ⋅ 1)
τa
Ð→ 1 ∥ 1, thus

T1
τ
Ð→ (1 ∥ 1)

τ
Ð→ 1.

• Deadlock: T2 ∶= (νa) (a ⋅ ā ⋅ 1). This term does not reduce at all: no reduction is possible under
the ν.

• Simple function call: T3 ∶= ((λxP ⋅ x)1) ∥ 1 reduces to 1 ∥ 1.

• Channel passing: T4 ∶= (νf) (νg) (f ⋅ 1 ∥ ((λaC ⋅ λbC ⋅ λcC ⋅ ((a ⋅ 1) ⋅ (b ⋅ 1)) ∥ (c ⋅ 1)) f̄ ḡ g)), which
β-reduces (and thus τ -reduces) to (νf) (νg) ((f ⋅ 1) ∥ (((f̄ ⋅ 1) ⋅ (ḡ ⋅ 1)) ∥ (g ⋅ 1))). Note that the
function has no idea whether two channels are dual or not, that is, its declaration ignores dual-
ity relations between its parameters. In practice, it means that no synchronization can happen
before the term is β-reduced.

4

3 A games model

Our goal is now to give a deterministic games model for the above language. For that purpose, we
will use event structures, providing an alternative formalism to the often-used tree-like games.

3.1 The event structures framework

The traditional approach to concurrent games is to represent them as tree-like games. If the
considered game consists in three moves, namely A, B and C, where A can be played by Opponent
and either one of the others by Player after Opponent has played A, that means that the states of the
game will be ε, A, A ⋅B and A ⋅C, which corresponds to the game tree

A

B C

This can of course be used to describe much larger games, and is often useful to reason concurrently.
The different configurations of the game that can be reached are quite easily read: one only has to
concatenate the events found along path starting at the root of the tree.

But it also has the major drawback of growing exponentially in size: let us consider a game in which
Opponent must play A and B in no particular order before Player can play C. The corresponding
tree-like game would be

A1

B1

C1

B2

A2

C2

This goes even worse with less structure: since there are n! permutations for n elements, the tree
can grow way larger.

The previous example also points out a kind of obfuscation of the causal histories: reading the
diagram above does not make it obvious to the reader that A and B must be played before C.

This problem can be solved by using event structures as a formalism to describe such games [RW11].
Informally, an event structure is a partial order ≤ on events (here, the game’s moves), alongside with
a consistency relation.

The purpose of the consistency relation is to describe non-determinism, in which we are not in-
terested here, since we seek a deterministic model: in all the following constructions, I will omit the
consistency set. The original constructions including it can be found for instance in [CCRW16,Win86].

The partial order e1 ≤ e2 means that e1 must have been played before e2 can be played. For
instance, the Hasse diagram of the previous game would look like

A B

C

3.1.1 Event structures

Definition (event structure)

An event structure [Win86] is a poset (E,≤E), where E is a set of events and ≤E is a partial order
on E such that for all e ∈ E, [e] ∶= {e′ ∈ E ∣ e′ ≤E e} is finite.

5

The partial order ≤E naturally induces a binary relation _ over E that is defined as the
transitive reduction of ≤E , ie. the minimal subset of ≤E such that the transitive closures of ≤E
and _ are the same.

In this context, the right intuition of event structures is a set of events that can occur, the players’
moves, alongside with a partial order stating that a given move cannot occur before another move.

Event structures are often represented as a directed acyclic graph (DAG) where the vertices are
the elements of E and the edges are the transitive reduction of ≤E (ie. _E).

Definition (event structure with polarities)

An event structure with polarities (ESP) is an event structure (E,≤E , ρ), where ρ ∶ E → {+,−} is
a function associating a polarity to each event.

In order to model games, this is used to represent whether a move is to be played by Player or
Opponent. To represent polarities, we will often use colors instead of + and − signs: a red-circled event
will have a negative polarity, ie. will be played by Opponent, while a green-circled one will have a
positive polarity.

The ESP of the previous example would then be

A B

C

Definition (configuration)

A configuration of an ESP A is a finite subset X ⊆ A that is down-closed, ie.

∀x ∈X,∀e ∈ A, e ≤A x Ô⇒ e ∈X.

We write C (A) the set of configurations of A.

A configuration can thus be seen as a valid state of the game. The set C (A) plays a major role in
definitions and proofs on games and strategies.

Notation

For x, y ∈ C (A), x
e

−Ð⊂ y states that y = x ⊔ {e} (and that both are valid configurations), where ⊔
is used to mean that the standard union (∪) is disjoint. It is also possible to write x

e
−Ð⊂ , stating

that x ⊔ {e} ∈ C (A), or x−⊂y.

3.1.2 Concurrent games

Definition (game)

A game A is an event structure with polarities.
The dual game A⊥ is the game A where all the polarities in ρ have been reversed.

For instance, one could imagine a game modeling the user interface of a coffee machine: Player is
the coffee machine, while Opponent is a user coming to buy a drink.

6

Example (coffee machine)

A game describing a coffee machine could be the following one:

coingetCoffee getTea

giveCoffee giveTea

Note that there are no edges at all. Indeed, we are here describing the game, that is, giving
a structure on which we can model any software that would run on the hardware of the coffee
machine. Nothing is hardwired that would make it mandatory to insert a coin before getting a
coffee: the software decides that, it is thus up to the strategy — of which we will talk later on —
to impose such constraints.

Example (process game)

We can represent a process by the following game:

call done

The “call” event will be triggered by Opponent (the system) when the process is started, and Player
will play “done” when the process has finished, if it ever does. The relation call ≤ done means
that a process cannot finish before it is called: unlike what happened in the previous example, it
is here a “hardwired” relation that the software cannot bypass.

Definition (pre-strategy)

A pre-strategy on the game A, written σ ∶ A, is an ESP such that

(i) σ ⊆ A (inclusion over set of events, not including the order);

(ii) C (σ) ⊆ C (A);

(iii) ∀s ∈ σ, ρA(s) = ρσ(s)

In particular, (ii) imposes that ≤A restrained to σ is included in ≤σ.

Example (processes, cont.)

A possible pre-strategy for the game consisting in two processes put side by side (in which the
game’s events are annotated with a number to distinguish the elements of the two processes) would
be

call0

done0

call1

This pre-strategy is valid: it is a subset of the game that does not include call1, but it does
include both call0 and done0 and inherits the game’s partial order.

This would describe two processes working in parallel. The process 0 waits before the process
1 is called to terminate, and the process 1 never returns. Assuming that called is an initially
false boolean shared between the two processes, this could for instance be written

7

Process 0

1 int main() {
2 while(!called) {}
3 return 0;
4 }

Process 1

1 int main() {
2 called=true;
3 while(true) {}
4 // never returns.
5 }

But as it is defined, a pre-strategy does not exactly capture what we expect of a strategy : it is too
expressive. For instance, the relation call0 ≤ call1 on a variant of the above strategy would be allowed,
stating that the operating system cannot decide to start the process 1 before the process 0. It is not up
to the program to decide that, this strategy is thus unrealistic. We then have to restrict pre-strategies
to strategies:

Definition (strategy)

A strategy is a pre-strategy σ ∶ A that “behaves well”, ie. that is

(i) receptive: ∀x ∈ C (σ), x ⊔ {e} ∈ C (A) ∧ ρ(e) = ⊖ Ô⇒ x ⊔ {e} ∈ C (σ)

(ii) courteous: ∀e _σ e
′ ∈ σ, (ρ(e), ρ(e′)) ≠ (−,+) Ô⇒ e _A e

′.

(i) captures the idea that we cannot prevent Opponent from playing one of its moves. Indeed, not
including an event in a strategy means that this event will not be played. It is unreasonable to consider
that a strategy could forbid Opponent to play a given move, unless the game itself forbids that as well.

(ii) states that unless a dependency relation is imposed by the games’ rules, one can only make
one of its moves depend on an Opponent move, ie. every direct arrow in the partial order that is not
inherited from the game should be ⊖ _ ⊕. Clearly, it is unreasonable to consider an arrow ⍟ _ ⊖,
which would mean forcing Opponent to wait for a move (either from Player or Opponent) before playing
their move; but ⊕ _ ⊕ is also unreasonable, since we’re working in a concurrent context. Intuitively,
one could think that when playing e then e′, it is undefined whether Opponent will receive e then e′

or e′ then e.

3.1.3 Operations on games and strategies

In order to manipulate strategies and define them by induction over the syntax, the following oper-
ations will be extensively used. It may also be worth noting that in the original formalism [CCRW16],
games, strategies and maps between them form a bicategory in which these operations play special
roles.

In this whole section, unless stated otherwise, E and F denotes ESPs; A, B and C denotes games;
σ ∶ A and τ ∶ B denotes strategies.

Definition (parallel composition)

The parallel composition E ∥ F of two ESPs is an ESP whose events are ({0} ×E) ⊔ ({1} × F)

(the disjoint tagged union of the events of E and F), and whose partial order is ≤E on E and ≤F

on F , with no relation between elements of E and F .
One can then naturally expand this definition to games (by preserving polarities) and to

strategies.

In the example before, when talking of “two processes side by side”, we actually referred formally
to the parallel composition of two processes, in which we took the liberty of renaming the events for
more clarity (which we will often do).

Given two strategies on dual games A and A⊥, it is natural and interesting to compute their
interaction, that is, “what will happen if one strategy plays against the other”.

8

Definition (closed interaction)

Given two strategies σ ∶ A and τ ∶ A⊥, their interaction σ ∧ τ is the ESP σ ∩ τ ⊆ A from which
causal loops have been removed.

More precisely, σ ∩ τ is a set adjoined with a preorder (≤σ ∪ ≤τ)
∗ (transitive closure) that

may not respect antisymmetry, that is, may have causal loops. The event structure σ ∧ τ is then
obtained by removing all the elements contained in such loops from σ∩ τ , yielding a partial order.

This construction is a simplified version of the analogous one from [CCRW16] (the pullback), taking
advantage of the fact that our event structures are deterministic — that is, without a consistency set.

This indeed captures what we wanted: σ ∧ τ contains the moves that both σ and τ are ready to
play, including both orders, except for the events that can never be played because of a “deadlock” (ie.
a causal loop).

We might now try to generalize that to an open case, where both strategies don’t play on the same
games, but only have a common part. Our goal here is to compose strategies: indeed, a strategy on
A⊥ ∥ B can be seen as a strategy from A to B, playing as Opponent on a board A and as Player on
a board B. This somehow looks like a function, that could be composed with another strategy on
B⊥ ∥ C (as one would compose two mathematical functions f and g into g ○ f).

Definition (compositional interaction)

Given two strategies σ ∶ A⊥ ∥ B and τ ∶ B⊥ ∥ C, their compositional interaction τ ⍟ σ is an event
structure defined as (σ ∥ C⊥) ∧ (A ∥ τ), where A and C⊥ are seen as strategies.

The idea is to put in correspondence the “middle” states (those of B) while adding “neutral” states
for A and C, which gives us two strategies playing on the same game (if we ignore polarities), A ∥ B ∥ C.

Here, we define τ ⍟ σ as an event structure (ie., without polarities): indeed, the two strategies
disagree on the polarities of the middle part. Alternatively, it can be seen as an ESP with a polarity
function over {+,−, ?}.

From this point, the notion of composition we sought is only a matter of “hiding” the middle part:

Definition (strategies composition)

Given two strategies σ ∶ A⊥ ∥ B and τ ∶ B⊥ ∥ C, their composition τ⊙σ is the ESP (τ⍟σ)∩(A⊥ ∥ C),
on which the partial order is the restriction of ≤τ⍟σ and the polarities those of σ and τ .

It is then useful to consider an identity strategy wrt. the composition operator. This identity is
called the copycat strategy: on a game A, the copycat strategy playing on A⊥ ∥ A replicates the moves
the other player from each board on the other.

Definition (copycat)

The copycat strategy of a game A, ccA, is the strategy on the game A⊥ ∥ A whose events are A⊥ ∥ A
wholly, on which the order is the transitive closure of ≤A⊥∥A ∪{(1 − i, e) ≤ (i, e)∣e ∈ A & ρ((i, e)) = ⊕}.

The copycat strategy of a game is indeed an identity for the composition of strategies. In fact, it
even holds that for a pre-strategy σ ∶ A, σ is a strategy ⇐⇒ ccA ⊙ σ = σ [RW11].

9

Example (copycat)

If we consider the following game A

A C B

its copycat strategy ccA is
(A⊥)

(A)

A C B

A C B

Note that the edge C → A in the upper row is no longer needed, since it can be obtained
transitively and we only represent the transitive reduction of the partial order.

3.2 Interpretation of λLCCS

We can now equip λLCCS with denotational semantics, interpreting the language as strategies as
defined in figure 6.

JxAK ∶= cc JAK JA⊸ BK ∶= JAK⊥ ∥ JBK

JtA⊸B uAK ∶= ccA⊸B ⊙ (JtK ∥ JuK)

JλxA ⋅ tK ∶= JtK

JP ∥ QK ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

call P

done P

call Q

done Q

call

done

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊙ (JP K ∥ JQK) JPK = JCK ∶=
call

done

JP ⋅QK ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

call P

done P

call Q

done Q

call

done

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊙ (JP K ∥ JQK) J1K ∶=
call

done

J(a ∶ C) ⋅ P K ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

call P

done P

call a

done a

call

done

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊙ (JP K ∥ JaK) J0K ∶= call

J(νa)P K ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

call a

done a

call ā

done ā

call P

done P

call

done

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⊙ JP K

Figure 6: λLCCS interpretation as strategies

In the representation above, the drawn strategies are organized in columns: for instance, the
strategy involved in JP ∥ QK has type P ⊥ ∥ P ⊥ ∥ P . Each column of events stands for one of those

10

games, in this order.
The J−K operator always sends a term x1 ∶ A1, . . . , xp ∶ Ap ⊢ t ∶ B to a strategy JtK ∶ JA1K⊥ ∥ . . . ∥

JApK⊥ ∥ JBK. For brevity purposes, the associativity and commutativity steps — up to isomorphism —
will be kept implicit here, although those are handled very formally in the implementation.

A lot of these interpretations is what was expected: P has the same interpretation as presented
before, and that of C is set to the same, 1 is interpreted as the game playing done while 0 does not,
the arrow is the type introduced for functions.

A variable is represented by a copycat of its type, to keep a version of the variable in the environment,
reflecting the judgement x ∶ A ⊢ x ∶ A. Same goes for the abstraction: the typing rule states that given
a term verifying Γ, x ∶ A ⊢ t ∶ B, we should obtain a term verifying Γ ⊢ λxA ⋅ t ∶ A ⊸ B. The only
thing we have to do is to “move” x from the environment to the term, which is transcribed by the
associativity of ∥. In the application, one can notice that the copycat wires up perfectly JtK ∥ JuK: the
version of x from the environment of t is connected to u, and the output of t is connected to the output
of the term.

3.3 Adequacy

We will now describe the main steps of the proof of the major result of this study, the adequacy of
the game semantics.

Theorem (adequacy)

The previous interpretation is adequate with respect to the operational semantics, that is

∀P st. (⊢ P ∶ P) , (P ⇓) ⇐⇒ (JP K = J1K)

In order to prove the theorem, a few intermediary definitions and results are required.

Definition (evaluation in a context)

For l a list of channels and P a term, the evaluation of P in the context l, JP Kl, is defined by
induction by JP K[] ∶= JP K and JP Kh∶∶t ∶= J(νh)P Kt.

Definition (valid contexts)

The valid contexts for a reduction P x
Ð→ Q, L

P
xÐ→Q, is the set of (ordered) lists of channels l such

that

(i) ∀a ∶ C ∈ fv(P) st. ā ∈ fv(P), a ∈ l or ā ∈ l;

(ii) if x = a ∶ C, a /∈ l;

(iii) ∀a ∶ C, a ∈ l Ô⇒ ā /∈ l.

where fv(P) denotes the set of free variables of P , defined as usual by induction over the
syntax as the set of variables unbound in the term.

11

Lemma

For all a ∶ C, P,Q,R ∶ P, the following properties hold:

(i) (νa) (P ∥ Q) = ((νa)P) ∥ Q when a, ā /∈ fvQ;

(ii) (νa) (P ∥ Q) = P ∥ ((νa)Q) when a, ā /∈ fvP ;

(iii) (νa) (P ⋅Q) = ((νa)P) ⋅Q when a, ā /∈ fvQ;

(iv) J ∥Kl is associative, that is, for all l, J(A ∥ B) ∥ CKl = JA ∥ (B ∥ C)Kl.

The previous lemma’s proof mostly consists in technical, formal reasoning on event structures, but
it is essentially intuitive.

The theorem is mostly a consequence of the following lemma:

Lemma

∀P
x
Ð→ Q, ∀l ∈ L

P
xÐ→Q,

(i) if x = τ , then JP Kl = JQKl;

(ii) if x = a ∶ C, then JP Kl = Ja ⋅QKl;

(iii) if x = τa (a ∶ C), then JP Ka∶∶l = JQKl.

Proof. We prove this by induction over the rules of the operational semantics of λLCCS. Most of
the cases are straightforward, thus, we will only sketch the proof for a few of those cases.

• The basic rules (for ∥, ⋅, . . .) are working thanks to the previous lemma.

•
P

a
Ð→ P ′ Q

ā
Ð→ Q′

P ∥ Q
τa
Ð→ P ′ ∥ Q′

: for all l, by (ii), JP Kl = Ja ⋅ P ′Kl and JQK = Jā ⋅ Q′K, thus J(νa)(P ∥

Q)Kl = J (νa) (a ⋅P ′ ∥ ā ⋅Q′)K (inline replacement of terms, permitted by the previous lemma),
thus J (νa) (P ∥ Q)Kl = JP ′ ∥ Q′Kl.

•
P

τc
Ð→ Q

(νa)P
τ
Ð→ Q

(c ∈ {a, ā}) clearly works thanks to (iii).

Proof: theorem. Forwards implication: (P ⇓) Ô⇒ (JP K = J1K). Proof by induction over the
derivation of P τ

Ð→
∗

1, by iterating the previous lemma.
Backwards implication: (JP K = J1K) Ô⇒ (P ⇓). We prove its contrapositive judgement,

P ≠ 1 & JP K = J1K Ô⇒ ∃Q ∶ P
τ
Ð→ Q by induction over the syntax of LCCS (wlog., we can

assume that P /Ð→β , because we can always do every β-reduction before any other τ -reduction,
and because the β-reduced term corresponding to a counter-example is a counter-example as well;
thus the terms are in LCCS): for each syntactic construction, we prove that under the induction
hypotheses, there is such a Q.

This proves the adequacy of our semantics, giving some credit to the game semantics we provided:
indeed, in order to decide whether a term converges, we can compute its associated strategy and check
whether it is J1K.

12

4 Implementation of deterministic concurrent games

Try online1 Github repository2

One of the goals of my internship was also to implement the operations on games and strategies
described in §3.1.3, and to use them to provide a convenient Dot representation of the operational
semantics of λLCCS described in §3.2.

4.1 Structures

The implementation aims to stay as close as possible to the mathematical model, while still pro-
viding quite efficient operations.

As we do not handle non-determinism, an event structure can be easily represented as a DAG in
memory. The actual representation that was chosen is a set of nodes, each containing (as well as a few
other information) a list of incoming and outgoing edges.

4.2 Generic operations

The software — apart from a few convenience functions used to input and output games and
strategies, as well as the λLCCS handling — mostly consists in graph handling functions (mostly used
internally) and the implementation of the operations on games and strategies previously described.

This allows to compute the result of any operation on a deterministic strategy, and is modular
enough to make it possible to implement non-determinism on the top of it later on (even without
having to understand the whole codebase). Those operations can be used directly from the OCaml
toplevel, conveniently initialized with the correct modules loaded with make toplevel; but it is mostly
intended to be a backend for higher level interfaces, such as the λLCCS interface.

4.3 Modelling λLCCS

The modelling of λLCCS required to implement a lexer/parser for the language and a function
transforming λLCCS terms into strategies, as well as a rendering backend, displaying a strategy as a
Dot graph. This could then just be plugged into an HTML/Javascript frontend using js_of_ocaml;
this frontend is linked above in the document.

The major difficulty came from the necessity to massively reorder the sub-terms of the strategies
on the go: indeed, in order to know how to compose two strategies σ and τ , the implementation
keeps track of the parallel compositions that were taken to get both strategies. For instance, if σ was
obtained by putting in parallel strategies so that the game is (A ∥ B⊥) ∥ C⊥, and τ was obtained the
same way, reaching a game (B ∥ C) ∥ D, the implementation would refuse to compute τ ⊙ σ, because
it would try to match games C⊥ and (B ∥ C).

The theoretical construction extensively uses the associativity (up to isomorphism) of ∥, but in the
code, each use of the associativity must be explicit, leading to a large amount of code.

5 Conclusion

During this internship, I have established deterministic game semantics for a simple concurrent
language. Although the language is fairly simple, it should not be too hard to lift it to a language
closer to real-world programming languages, through the inclusion of the imperative primitives found
in the literature.

I also explored the possibility to reach a full-abstraction result. The full-abstraction property
states that two terms are observationally equivalent if and only if their (denotational) semantics are

1https://tobast.fr/l3/demo.html
2https://github.com/tobast/cam-strategies/

13

https://tobast.fr/l3/demo.html
https://github.com/tobast/cam-strategies/
https://tobast.fr/l3/demo.html
https://github.com/tobast/cam-strategies/

also observationally equivalent, that is, in this context, for all P,Q two λLCCS terms such that
Γ ⊢ P,Q ∶ A,

[∀C[−] a context ∶ (⊢ C[P] ∶ P) , C[P] ⇓ ⇐⇒ C[Q] ⇓] ⇐⇒ (JP K ≃ JQK)

where ≃ denotes the observational equivalence on strategies, that is,

(σ ∶ A) ≃ (τ ∶ A) ⇐⇒ ∀(α ∶ A⊥ ∥ P), α⊙ σ = α⊙ τ

Yet, by lack of time, I had to abandon this path. Indeed, this would have required either to modify
λLCCS or to restrict the authorized strategies, because of the following legal strategy, which cannot
be expressed as the semantics of a term in λLCCS:

PC

call

done

call

done

This strategy behaves like a “forget” strategy: its effect is to call one end of a channel, and then to
resume the execution of the term without waiting for the other end to be called. If we integrate this
operator to the language as (f a) for any channel a, this construction can discriminate terms that would
not have been discriminated before. For instance λxC⊸P ⋅(νa) ((xa) ⋅ ā ⋅1) and λxC⊸P ⋅(νa) ((xa) ⋅ ā ⋅0)
can be discriminated by the context C[X] =X(λaC ⋅ (fa)).

References

[AHM98] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game semantics for
general references. In Logic in Computer Science, 1998. Proceedings. Thirteenth Annual
IEEE Symposium on, pages 334–344. IEEE, 1998.

[AJM00] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for PCF.
Information and Computation, 163(2):409–470, 2000.

[AM96] Samson Abramsky and Guy McCusker. Linearity, sharing and state: a fully abstract
game semantics for idealized algol with active expressions. Electronic Notes in Theoretical
Computer Science, 3:2–14, 1996.

[CCRW16] Simon Castellan, Pierre Clairambault, Silvain Rideau, and Glynn Winskel. Concurrent
games. arXiv preprint arXiv:1604.04390, 2016.

[CP10] Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
International Conference on Concurrency Theory, pages 222–236. Springer, 2010.

[GM04] Dan R Ghica and Andrzej S Murawski. Angelic semantics of fine-grained concurrency. In
International Conference on Foundations of Software Science and Computation Structures,
pages 211–225. Springer, 2004.

[HO00] J Martin E Hyland and C-HL Ong. On full abstraction for PCF: I, II, and III. Information
and computation, 163(2):285–408, 2000.

[Lai01a] James Laird. A game semantics of Idealized CSP. Electronic Notes in Theoretical Computer
Science, 45:232–257, 2001.

[Lai01b] James Laird. A fully abstract game semantics of local exceptions. In Logic in Computer
Science, 2001. Proceedings. 16th Annual IEEE Symposium on, pages 105–114. IEEE, 2001.

[Mil80] Robin Milner. A calculus of communicating systems. 1980.

14

[Rey78] John C Reynolds. Syntactic control of interference. In Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pages 39–46.
ACM, 1978.

[RW11] Silvain Rideau and Glynn Winskel. Concurrent strategies. In LICS, volume 11, pages
409–418, 2011.

[Win86] Glynn Winskel. Event structures. In Advanced Course on Petri Nets, pages 325–392.
Springer, 1986.

15

	Introduction
	A linear -calculus with concurrency primitives: LCCS
	A linear variant of CCS : LCCS
	Lifting to the higher order: linear -calculus
	Examples

	A games model
	The event structures framework
	Event structures
	Concurrent games
	Operations on games and strategies

	Interpretation of LCCS
	Adequacy

	Implementation of deterministic concurrent games
	Structures
	Generic operations
	Modelling LCCS

	Conclusion

