Computer Graphics: A Bouncing Jelly Ball

Computer Graphics: A Bouncing Jelly Ball
https://huit.re/mpri-jelly

Théophile Bastian and Rémi Oudin

MPRI 2017-2018
These slides: https://huit.re/mpri-jelly-slides

2018-14-02

1/17


https://huit.re/mpri-jelly
https://huit.re/mpri-jelly-slides

Story Board
Algorithms used

Implementation
Demo Time!

2/17



Computer Graphics: A Bouncing Jelly Ball
I—Story Board

Story Board
A Bouncing Ball

Oh, noes! Someone dropped their jelly!
The jelly is a red-ish ball.

[
[

m It bounces on the ground.

m A ground can be flat or any smooth curve.
[

The ball has an initial speed on x and z axis.

3/17



Story Board

Algorithms used
m Marching Cubes
m Jelly time!
m Improved Perlin Noise

Implementation
Demo Time!

4/17



Computer Graphics: A Bouncing Jelly Ball
I—Algorithms used

Algorithms used

m Focus on low-level implementation

Jelly described as an implicit surface
~ finding a good jelly equation

Implement Marching Cubes to render it

m Tentative implementation of a non-flat, Perlin-based ground
~> broken physics and rendering

5/17



Computer Graphics: A Bouncing Jelly Ball
LAlgorithms used
LMarching Cubes

Marching Cubes: brief reminder

m Implicit surface — triangulated mesh

Algorithm 1: Marching cubes (naive)

for each elementary cube c in space do
Compute whether cube vertices are inside the volume;
~~ 256 possible configurations;
Case analysis: add corresponding faces and vertices;

m Actually, 15 configurations up to rotations, symmetries
m Yield edges on which vertices go

m Binary search: actual vertice position along the edge

6/17



Computer Graphics: A Bouncing Jelly Ball
I—Algcvri'chms used
L Marching Cubes

Well-known configurations

— \

Source: wikipedia, under GNU GPLv2, by Jean-Marie Favreau

7/17



Computer Graphics: A Bouncing Jelly Ball
I—Algorithms used
LMarching Cubes

Marching Cubes: details

m Configurations generation: with python, generating a C++ file
m Explored space: bounded with a user-provided bounding box

m User-provided hint: BFS from this point to find an
intersection, then BFS from this intersection to follow the
surface

m Could probably be avoided by binary-searching-ish method to
find first intersection

8/17



Computer Graphics: A Bouncing Jelly Ball
I—Algorithms used
L Jelly time!

. \

9/17



Computer Graphics: A Bouncing Jelly Ball
I—Algorithms used
L Jelly time!

Modelling jelly

Represented as a spheroid of radius q and height p.
By default it is a sphere

Volume is constant inside the box.

When bouncing on the ground, continuously deforms by
updating p = d(ground, center) and q = /3/4- V /(7 * p)
m The maximal deformation of the ball is bounded by a given
parameter.

m Implementation: The ball has a physical model, and embeds
the implicit surface as an attribute.

10/17



Computer Graphics: A Bouncing Jelly Ball
I—Algorithms used

L Improved Perlin Noise

Improved Perlin Noise

Brief reminder

Algorithm to generate pseudo random texture.

Here used for ground generation.

Used with a Fractional Brownian motion sum for better
results.

Implemented as an Implicit Surface: perlin(x, y, z) returns 0 if
(x,y,z) is in the surface.

In essence perlin(x,y,z) =y — fBm(x,0, z), thus y is the
value of the noise at ordinate 0.

11/17



Computer Graphics: A Bouncing Jelly Ball
LAlgorithms used
leproved Perlin Noise

Improved Perlin Noise

Improved you said?

m Original algorithm had 2 deficiencies : Discontinuity in second
order interpolation and non-optimal gradient computation.

m The interpolation function changes from 3t? — 2t3 to
6t5 — 15t* + 10£3L:

m Gradient function isn't random anymore, the vectors are the
one from the directions of the center of a cube to its edges.
The direction is the result of P the permutation vector,
modulo 12,

m The permutation vector can be randomly generated from a
seed.

m A lot of work in order to find «good» parameters.

"http://mrl.nyu.edu/~perlin/paperdd5.pdf 12/17


http://mrl.nyu.edu/~perlin/paper445.pdf

Story Board
Algorithms used

Implementation
Demo Time!

13/17



Computer Graphics: A Bouncing Jelly Ball

L Implementation

Implementation overview

m Guidelines remainder: “use whatever open-source lib you
want, but the more it becomes overkill, the more your demo
must be awesome”

14/17



Computer Graphics: A Bouncing Jelly Ball
L Implementation

Implementation overview

m Guidelines remainder: “use whatever open-source lib you
want, but the more it becomes overkill, the more your demo
must be awesome”

m ...or, when rephrased: “use whatever open-source lib you
want, but the duller it is, the more your demo is allowed to
look incredibly bad”

14/17



Computer Graphics: A Bouncing Jelly Ball

L Implementation

Implementation overview

m Guidelines remainder: “use whatever open-source lib you
want, but the more it becomes overkill, the more your demo
must be awesome”

m ...or, when rephrased: “use whatever open-source lib you
want, but the duller it is, the more your demo is allowed to
look incredibly bad”

m Thus, we used raw OpenGL with GLU and GLUT
m Nothing more, pure C4++

14/17



Computer Graphics: A Bouncing Jelly Ball

L Implementation

Implementation overview

m Guidelines remainder: “use whatever open-source lib you
want, but the more it becomes overkill, the more your demo
must be awesome”

m ...or, when rephrased: “use whatever open-source lib you
want, but the duller it is, the more your demo is allowed to
look incredibly bad”

m Thus, we used raw OpenGL with GLU and GLUT
m Nothing more, pure C4++

You've been warned.

14/17



Computer Graphics: A Bouncing Jelly Ball

L Implementation

Implementation: details

= 2000 SLOC
m Loads of code to make OpenGL work

m Lighting is still broken (how does that even work?!)

15/17



Story Board
Algorithms used

Implementation
Demo Time!

16/17



Computer Graphics: A Bouncing Jelly Ball
L_Demo Time!

Demo!
https://huit.re/mpri-jelly

CC-BY-SA, Naib @ Wikipedia

17/17


https://huit.re/mpri-jelly

	Story Board
	Algorithms used
	Marching Cubes
	Jelly time!
	Improved Perlin Noise

	Implementation
	Demo Time!

