
1/17

Computer Graphics: A Bouncing Jelly Ball

Computer Graphics: A Bouncing Jelly Ball
https://huit.re/mpri-jelly

Théophile Bastian and Rémi Oudin

MPRI 2017 – 2018
These slides: https://huit.re/mpri-jelly-slides

2018-14-02

https://huit.re/mpri-jelly
https://huit.re/mpri-jelly-slides


2/17

Computer Graphics: A Bouncing Jelly Ball
Story Board

Table of Contents

1 Story Board

2 Algorithms used

3 Implementation

4 Demo Time!



3/17

Computer Graphics: A Bouncing Jelly Ball
Story Board

Story Board
A Bouncing Ball

Oh, noes! Someone dropped their jelly!
The jelly is a red-ish ball.
It bounces on the ground.
A ground can be flat or any smooth curve.
The ball has an initial speed on x and z axis.



4/17

Computer Graphics: A Bouncing Jelly Ball
Algorithms used

Table of Contents

1 Story Board

2 Algorithms used
Marching Cubes
Jelly time!
Improved Perlin Noise

3 Implementation

4 Demo Time!



5/17

Computer Graphics: A Bouncing Jelly Ball
Algorithms used

Algorithms used

Focus on low-level implementation

Jelly described as an implicit surface
 finding a good jelly equation

Implement Marching Cubes to render it

Tentative implementation of a non-flat, Perlin-based ground
 broken physics and rendering



6/17

Computer Graphics: A Bouncing Jelly Ball
Algorithms used

Marching Cubes

Marching Cubes: brief reminder

Implicit surface → triangulated mesh

Algorithm 1: Marching cubes (naive)
for each elementary cube c in space do

Compute whether cube vertices are inside the volume;
 256 possible configurations;
Case analysis: add corresponding faces and vertices;

Actually, 15 configurations up to rotations, symmetries
Yield edges on which vertices go
Binary search: actual vertice position along the edge



7/17

Computer Graphics: A Bouncing Jelly Ball
Algorithms used

Marching Cubes

Well-known configurations

Source: wikipedia, under GNU GPLv2, by Jean-Marie Favreau



8/17

Computer Graphics: A Bouncing Jelly Ball
Algorithms used

Marching Cubes

Marching Cubes: details

Configurations generation: with python, generating a C++ file
Explored space: bounded with a user-provided bounding box
User-provided hint: BFS from this point to find an
intersection, then BFS from this intersection to follow the
surface
Could probably be avoided by binary-searching-ish method to
find first intersection



9/17

Computer Graphics: A Bouncing Jelly Ball
Algorithms used

Jelly time!



10/17

Computer Graphics: A Bouncing Jelly Ball
Algorithms used

Jelly time!

Modelling jelly

Represented as a spheroid of radius q and height p.
By default it is a sphere
Volume is constant inside the box.
When bouncing on the ground, continuously deforms by
updating p = d(ground , center) and q =

√
3/4 · V /(π ∗ p)

The maximal deformation of the ball is bounded by a given
parameter.
Implementation: The ball has a physical model, and embeds
the implicit surface as an attribute.



11/17

Computer Graphics: A Bouncing Jelly Ball
Algorithms used

Improved Perlin Noise

Improved Perlin Noise
Brief reminder

Algorithm to generate pseudo random texture.
Here used for ground generation.
Used with a Fractional Brownian motion sum for better
results.
Implemented as an Implicit Surface: perlin(x , y , z) returns 0 if
(x , y , z) is in the surface.
In essence perlin(x , y , z) = y − fBm(x , 0, z), thus y is the
value of the noise at ordinate 0.



12/17

Computer Graphics: A Bouncing Jelly Ball
Algorithms used

Improved Perlin Noise

Improved Perlin Noise
Improved you said?

Original algorithm had 2 deficiencies : Discontinuity in second
order interpolation and non-optimal gradient computation.
The interpolation function changes from 3t2 − 2t3 to
6t5 − 15t4 + 10t31:
Gradient function isn’t random anymore, the vectors are the
one from the directions of the center of a cube to its edges.
The direction is the result of P the permutation vector,
modulo 12.
The permutation vector can be randomly generated from a
seed.
A lot of work in order to find «good» parameters.

1http://mrl.nyu.edu/~perlin/paper445.pdf

http://mrl.nyu.edu/~perlin/paper445.pdf


13/17

Computer Graphics: A Bouncing Jelly Ball
Implementation

Table of Contents

1 Story Board

2 Algorithms used

3 Implementation

4 Demo Time!



14/17

Computer Graphics: A Bouncing Jelly Ball
Implementation

Implementation overview

Guidelines remainder: “use whatever open-source lib you
want, but the more it becomes overkill, the more your demo
must be awesome”

. . . or, when rephrased: “use whatever open-source lib you
want, but the duller it is, the more your demo is allowed to
look incredibly bad”
Thus, we used raw OpenGL with GLU and GLUT
Nothing more, pure C++
You’ve been warned.



14/17

Computer Graphics: A Bouncing Jelly Ball
Implementation

Implementation overview

Guidelines remainder: “use whatever open-source lib you
want, but the more it becomes overkill, the more your demo
must be awesome”
. . . or, when rephrased: “use whatever open-source lib you
want, but the duller it is, the more your demo is allowed to
look incredibly bad”

Thus, we used raw OpenGL with GLU and GLUT
Nothing more, pure C++
You’ve been warned.



14/17

Computer Graphics: A Bouncing Jelly Ball
Implementation

Implementation overview

Guidelines remainder: “use whatever open-source lib you
want, but the more it becomes overkill, the more your demo
must be awesome”
. . . or, when rephrased: “use whatever open-source lib you
want, but the duller it is, the more your demo is allowed to
look incredibly bad”
Thus, we used raw OpenGL with GLU and GLUT
Nothing more, pure C++

You’ve been warned.



14/17

Computer Graphics: A Bouncing Jelly Ball
Implementation

Implementation overview

Guidelines remainder: “use whatever open-source lib you
want, but the more it becomes overkill, the more your demo
must be awesome”
. . . or, when rephrased: “use whatever open-source lib you
want, but the duller it is, the more your demo is allowed to
look incredibly bad”
Thus, we used raw OpenGL with GLU and GLUT
Nothing more, pure C++
You’ve been warned.



15/17

Computer Graphics: A Bouncing Jelly Ball
Implementation

Implementation: details

2000 SLOC
Loads of code to make OpenGL work
Lighting is still broken (how does that even work?!)



16/17

Computer Graphics: A Bouncing Jelly Ball
Demo Time!

Table of Contents

1 Story Board

2 Algorithms used

3 Implementation

4 Demo Time!



17/17

Computer Graphics: A Bouncing Jelly Ball
Demo Time!

Demo!
https://huit.re/mpri-jelly

CC-BY-SA, Naib @ Wikipedia

https://huit.re/mpri-jelly

	Story Board
	Algorithms used
	Marching Cubes
	Jelly time!
	Improved Perlin Noise

	Implementation
	Demo Time!

